剑指Offer 骰子的点数(线性DP和DFS两种解法)

将一个骰子投掷 n 次,获得的总点数为 s,s 的可能范围为 n∼6n。

掷出某一点数,可能有多种掷法,例如投掷 2 次,掷出 3 点,共有 [1,2],[2,1][ 两种掷法。

请求出投掷 n 次,掷出 n∼6n 点分别有多少种掷法。

样例1
输入:n=1

输出:[1, 1, 1, 1, 1, 1]

解释:投掷1次,可能出现的点数为1-6,共计6种。每种点数都只有1种掷法。所以输出[1, 1, 1, 1, 1, 1]。
样例2
输入:n=2

输出:[1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1]

解释:投掷2次,可能出现的点数为2-12,共计11种。每种点数可能掷法数目分别为1,2,3,4,5,6,5,4,3,2,1。

      所以输出[1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1]
class Solution {
public:
    vector<int> numberOfDice(int n) {
        vector<vector<int>>f(n+1,vector<int>(6*n+1));
        //f[i][j]表示投i次和是j的方案数
        f[0][0]=1;
        for(int i=1;i<=n;i++){
          for(int j=1;j<=6*i;j++){
             for(int k=1;k<=min(j,6);k++){//根据最后一次投多少进行划分
                f[i][j]+=f[i-1][j-k];
            }
        }
    }
    vector<int>res;
    for(int i = n; i <= n * 6; i ++) res.push_back(f[n][i]);
    return res;
    }
};

class Solution {
public:
    vector<int> numberOfDice(int n) {
        vector<int> res;
        for(int i = n; i <= n * 6; i ++) res.push_back(dfs(n, i));
        return res;
    }

    int dfs(int n, int sum)
    {
       if(sum<0)return 0;
       if(!n){
           if(sum==0)
           return 1;
           else 
           return 0;
    }
       int res=0;
       for(int i=1;i<=6;i++)
        res+=dfs(n-1,sum-i);
       return res;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小王子y

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值