将一个骰子投掷 n 次,获得的总点数为 s,s 的可能范围为 n∼6n。
掷出某一点数,可能有多种掷法,例如投掷 2 次,掷出 3 点,共有 [1,2],[2,1][ 两种掷法。
请求出投掷 n 次,掷出 n∼6n 点分别有多少种掷法。
样例1
输入:n=1
输出:[1, 1, 1, 1, 1, 1]
解释:投掷1次,可能出现的点数为1-6,共计6种。每种点数都只有1种掷法。所以输出[1, 1, 1, 1, 1, 1]。
样例2
输入:n=2
输出:[1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1]
解释:投掷2次,可能出现的点数为2-12,共计11种。每种点数可能掷法数目分别为1,2,3,4,5,6,5,4,3,2,1。
所以输出[1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1]。
class Solution {
public:
vector<int> numberOfDice(int n) {
vector<vector<int>>f(n+1,vector<int>(6*n+1));
//f[i][j]表示投i次和是j的方案数
f[0][0]=1;
for(int i=1;i<=n;i++){
for(int j=1;j<=6*i;j++){
for(int k=1;k<=min(j,6);k++){//根据最后一次投多少进行划分
f[i][j]+=f[i-1][j-k];
}
}
}
vector<int>res;
for(int i = n; i <= n * 6; i ++) res.push_back(f[n][i]);
return res;
}
};
class Solution {
public:
vector<int> numberOfDice(int n) {
vector<int> res;
for(int i = n; i <= n * 6; i ++) res.push_back(dfs(n, i));
return res;
}
int dfs(int n, int sum)
{
if(sum<0)return 0;
if(!n){
if(sum==0)
return 1;
else
return 0;
}
int res=0;
for(int i=1;i<=6;i++)
res+=dfs(n-1,sum-i);
return res;
}
};