祖孙询问(LCA最近公共祖先)

给定一棵包含 n 个节点的有根无向树,节点编号互不相同,但不一定是 1∼n。

有 mm 个询问,每个询问给出了一对节点的编号 x 和 y,询问 x与 y 的祖孙关系。

输入格式
输入第一行包括一个整数 表示节点个数;

接下来 n 行每行一对整数 a 和 b,表示 a 和 b 之间有一条无向边。如果 bb 是 −1,那么 a 就是树的根;

第 n+2 行是一个整数 m 表示询问个数;

接下来 m 行,每行两个不同的正整数 x 和 y,表示一个询问。

输出格式
对于每一个询问,若 x 是 y 的祖先则输出 1,若 y 是 x 的祖先则输出 22,否则输出 0。

数据范围
1≤n,m≤4×104
1≤每个节点的编号≤4×104
输入样例:
10
234 -1
12 234
13 234
14 234
15 234
16 234
17 234
18 234
19 234
233 19
5
234 233
233 12
233 13
233 15
233 19
输出样例:
1
0
0
0
2
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>

using namespace std;

const int N = 40010, M = N * 2;

int n, m;
int h[N], e[M], ne[M], idx;
int depth[N];
int fa[N][25];//f[i][j]代表i这个点往上跳2的j次方步数的点


void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}

void bfs(int root)
{
    memset(depth, 0x3f, sizeof depth);
    depth[0] = 0;//设置哨兵
    depth[root]=1;
    queue<int>q;
    q.push(root);
    while(q.size()){
        int t=q.front();
        q.pop();
        for(int i=h[t];~i;i=ne[i]){
            int j=e[i];
            if(depth[t]+1<depth[j]){
                depth[j]=depth[t]+1;
                q.push(j);
                fa[j][0]=t;
                for(int k=1;k<20;k++){
                    fa[j][k]=fa[fa[j][k-1]][k-1];
                }
            }
        }
    }
}

int lca(int a, int b)
{
    if(depth[a]<depth[b])swap(a,b);
    for(int k=19;k>=0;k--){
        if(depth[fa[a][k]]>=depth[b])//跳出去fa[a][k]=0,depth[0]=0肯定小于depth[b],不执行
        a=fa[a][k];
    }
    if(a==b)return a;//同一个点直接返回
    for(int k=19;k>=0;k--){
        if(fa[a][k]!=fa[b][k]){//跳出去是等于不用管
          a=fa[a][k];
          b=fa[b][k];
        }
    }
    return fa[a][0];
}

int main()
{
    scanf("%d", &n);
    int root = 0;
    memset(h, -1, sizeof h);

    for (int i = 0; i < n; i ++ )
    {
        int a, b;
        scanf("%d%d", &a, &b);
        if (b == -1) root = a;
        else add(a, b), add(b, a);
    }

    bfs(root);

    scanf("%d", &m);
    while (m -- )
    {
        int a, b;
        scanf("%d%d", &a, &b);
        int p = lca(a, b);
        if (p == a) puts("1");
        else if (p == b) puts("2");
        else puts("0");
    }

    return 0;
}

//Tarjan
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 40010, M = N * 2;

struct ver{
    int y, id, v;
};
vector<ver> query[N];   // first存查询的另外一个点,second存查询编号

int n, m;
int h[N], e[M], ne[M], idx;
int p[N];
int st[N];
int res[N];

void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}

int find(int x)
{
    if (p[x] != x) p[x] = find(p[x]);
    return p[x];
}




void tarjan(int u)
{
    st[u] = 1;
    for (int i = h[u]; ~i; i = ne[i])
    {
        int j = e[i];
        if (!st[j])
        {
            tarjan(j);
            p[j] = u;
        }
    }
   for(auto item:query[u])
    {
        int y=item.y ;
        int id=item.id ;
        int t=item.v;
        if(st[y]==2)
        {
            int fa=find(y) ;
            if(fa==u) res[id]= t;
        }
    }
    st[u] = 2;
}



int main()
{
    scanf("%d", &n);
    int root = 0;
    memset(h, -1, sizeof h);

    for (int i = 0; i < n; i ++ )
    {
        int a, b;
        scanf("%d%d", &a, &b);
        if (b == -1) root = a;
        else add(a, b), add(b, a);
    }

    for (int i = 1; i <= N; i ++ ) p[i] = i;
    
    
    scanf("%d", &m);
    
     for (int i = 1; i <= m; i ++ )
    {
        int a, b;
        scanf("%d%d", &a, &b);
        query[a].push_back({b,i,1}) ;
        query[b].push_back({a,i,2}) ;
        
    }
    
    tarjan(root);//只能判断a是不是b的父亲
    
  for(int i=1;i<=m;i++) printf("%d\n",res[i]) ;
  
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小王子y

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值