给定一棵包含 n 个节点的有根无向树,节点编号互不相同,但不一定是 1∼n。
有 mm 个询问,每个询问给出了一对节点的编号 x 和 y,询问 x与 y 的祖孙关系。
输入格式
输入第一行包括一个整数 表示节点个数;
接下来 n 行每行一对整数 a 和 b,表示 a 和 b 之间有一条无向边。如果 bb 是 −1,那么 a 就是树的根;
第 n+2 行是一个整数 m 表示询问个数;
接下来 m 行,每行两个不同的正整数 x 和 y,表示一个询问。
输出格式
对于每一个询问,若 x 是 y 的祖先则输出 1,若 y 是 x 的祖先则输出 22,否则输出 0。
数据范围
1≤n,m≤4×104
1≤每个节点的编号≤4×104
输入样例:
10
234 -1
12 234
13 234
14 234
15 234
16 234
17 234
18 234
19 234
233 19
5
234 233
233 12
233 13
233 15
233 19
输出样例:
1
0
0
0
2
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
const int N = 40010, M = N * 2;
int n, m;
int h[N], e[M], ne[M], idx;
int depth[N];
int fa[N][25];//f[i][j]代表i这个点往上跳2的j次方步数的点
void add(int a, int b)
{
e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}
void bfs(int root)
{
memset(depth, 0x3f, sizeof depth);
depth[0] = 0;//设置哨兵
depth[root]=1;
queue<int>q;
q.push(root);
while(q.size()){
int t=q.front();
q.pop();
for(int i=h[t];~i;i=ne[i]){
int j=e[i];
if(depth[t]+1<depth[j]){
depth[j]=depth[t]+1;
q.push(j);
fa[j][0]=t;
for(int k=1;k<20;k++){
fa[j][k]=fa[fa[j][k-1]][k-1];
}
}
}
}
}
int lca(int a, int b)
{
if(depth[a]<depth[b])swap(a,b);
for(int k=19;k>=0;k--){
if(depth[fa[a][k]]>=depth[b])//跳出去fa[a][k]=0,depth[0]=0肯定小于depth[b],不执行
a=fa[a][k];
}
if(a==b)return a;//同一个点直接返回
for(int k=19;k>=0;k--){
if(fa[a][k]!=fa[b][k]){//跳出去是等于不用管
a=fa[a][k];
b=fa[b][k];
}
}
return fa[a][0];
}
int main()
{
scanf("%d", &n);
int root = 0;
memset(h, -1, sizeof h);
for (int i = 0; i < n; i ++ )
{
int a, b;
scanf("%d%d", &a, &b);
if (b == -1) root = a;
else add(a, b), add(b, a);
}
bfs(root);
scanf("%d", &m);
while (m -- )
{
int a, b;
scanf("%d%d", &a, &b);
int p = lca(a, b);
if (p == a) puts("1");
else if (p == b) puts("2");
else puts("0");
}
return 0;
}
//Tarjan
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 40010, M = N * 2;
struct ver{
int y, id, v;
};
vector<ver> query[N]; // first存查询的另外一个点,second存查询编号
int n, m;
int h[N], e[M], ne[M], idx;
int p[N];
int st[N];
int res[N];
void add(int a, int b)
{
e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}
int find(int x)
{
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
void tarjan(int u)
{
st[u] = 1;
for (int i = h[u]; ~i; i = ne[i])
{
int j = e[i];
if (!st[j])
{
tarjan(j);
p[j] = u;
}
}
for(auto item:query[u])
{
int y=item.y ;
int id=item.id ;
int t=item.v;
if(st[y]==2)
{
int fa=find(y) ;
if(fa==u) res[id]= t;
}
}
st[u] = 2;
}
int main()
{
scanf("%d", &n);
int root = 0;
memset(h, -1, sizeof h);
for (int i = 0; i < n; i ++ )
{
int a, b;
scanf("%d%d", &a, &b);
if (b == -1) root = a;
else add(a, b), add(b, a);
}
for (int i = 1; i <= N; i ++ ) p[i] = i;
scanf("%d", &m);
for (int i = 1; i <= m; i ++ )
{
int a, b;
scanf("%d%d", &a, &b);
query[a].push_back({b,i,1}) ;
query[b].push_back({a,i,2}) ;
}
tarjan(root);//只能判断a是不是b的父亲
for(int i=1;i<=m;i++) printf("%d\n",res[i]) ;
return 0;
}