必做题11-2
蒜头君的班级里有 n2n^2n2 个同学,现在全班同学已经排列成一个 n∗nn * nn∗n 的方阵,但是老师却临时给出了一组新的列队方案
为了方便列队,所以老师只关注这个方阵中同学的性别,不看具体的人是谁
这里我们用 000 表示男生,用 111 表示女生
现在蒜头君告诉你同学们已经排好的方阵是什么样的,再告诉你老师希望的方阵是什么样的
他想知道同学们已经列好的方阵能否通过顺时针旋转变成老师希望的方阵
1.不需要旋转则输出 000
2.顺时针旋转 90° 则输出 111
3.顺时针旋转 180° 则输出 222
4.顺时针旋转 270° 则输出 333
若不满足以上四种情况则输出 −1-1−1
若满足多种情况,则输出较小的数字
Input
第一行为一个整数 nnn
接下来的 nnn 行同学们已经列好的 010101 方阵;
再接下来的 nnn 行表示老师希望的的 010101 方阵。
数据范围
对于 100%100%100% 的数据中,1≤n≤201 \leq n \leq 201≤n≤20
Output
输出仅有一行,该行只有一个整数,如题所示。输出时每行末尾的多余空格,不影响答案正确性
Sample Input
4
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
Sample Output
1
我的思路:
这道题是要判断将当前矩阵旋转一定的角度是否可以得到目标矩阵。这里只要计算好矩阵旋转90度、180度、270度是相关坐标的变换即可。最后根据关系,判断当前矩阵和旋转后的矩阵对应位置的元素是否正确,就可以判断当前矩阵是否可以通过旋转变换到目标矩阵。
我的总结:
这道题只要弄明白矩阵旋转变换后,矩阵元素位置的变换就可以了。
我的代码:
#include<iostream>
using namespace std;
int n,a,peo[22][22],per[22][22];
bool jug0()
{
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
if(peo[i][j]!=per[i][j]) return false;
}
return true;
}
bool jug1()
{
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
if(peo[i][j]!=per[n+1-j][i]) return false;
}
return true;
}
bool jug2()
{
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
if(peo[i][j]!=per[n+1-i][n+1-j]) return false;
}
return true;
}
bool jug3()
{
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
if(peo[i][j]!=per[j][n+1-i]) return false;
}
return true;
}
int main()
{
cin>>n;
int sum1=0,sum2=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
cin>>per[i][j];
if(per[i][j]) sum1++;
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
cin>>peo[i][j];
if(peo[i][j]) sum2++;
}
if(sum1!=sum2) cout<<"-1";
else
{
if(jug0()) cout<<"0";
else if(jug1()) cout<<"1";
else if(jug2()) cout<<"2";
else if(jug3()) cout<<"3";
else cout<<"-1";
}
return 0;
}