技术随笔《二》:人形机器人模仿学习方法与数据集资源汇总以及传统控制方法对比概述

技术随笔《二》:人形机器人模仿学习与传统控制方法概述

本文是具身智能学习笔记栏目的第二篇,聚焦于人形机器人模仿学习这一重要研究方向。通过系统梳理模仿学习在人形机器人领域的应用,并与传统控制方法进行深入对比,帮助读者全面了解这一前沿技术的发展现状、优势局限及未来趋势。

引言:为什么需要模仿学习?

模仿学习(Imitation Learning)是机器人学习人类行为的重要方法。通过观察和模仿人类的动作,机器人可以快速掌握复杂的运动技能,而不需要从零开始探索。这种方法不仅能够加速学习过程,还能确保机器人学习到的行为更接近人类的自然动作。

一、模仿学习的基本原理

1. 行为克隆(Behavioral Cloning)

  • 基本原理:通过监督学习,直接从专家演示数据中学习状态到动作的映射
  • 优势:实现简单,训练速度快
  • 局限:容易受到数据分布偏移的影响

2. 逆强化学习(Inverse Reinforcement Learning)

  • 基本原理:从专家演示中推断出奖励函数,再通过强化学习优化策略
  • 优势:能够学习到更鲁棒的策略
  • 局限:计算复杂度高,需要大量数据

3. 生成对抗模仿学习(GAIL)

  • 基本原理:使用生成对抗网络来学习专家策略
  • 优势:能够处理高维状态空间,学习效果更好
  • 局限:训练不稳定,需要仔细调整超参数

二、开源项目与数据集

1. 代表性开源项目

1.1 RoboTurk
  • 项目简介:斯坦福大学开发的人形机器人远程操作平台
  • 主要特点
    • 支持实时远程操作
    • 提供丰富的演示数据收集工具
    • 包含完整的模仿学习pipeline
1.2 DAPG (Demonstration Augmented Policy Gradient)
  • 项目简介:UC Berkeley开发的基于演示的策略梯度算法
  • 主要特点
    • 结合了模仿学习和强化学习的优势
    • 支持从少量演示数据开始学习
    • 适用于复杂的人形机器人任务
  • GitHub地址:https://github.com/aravindr93/hand_dapg
1.3 DexPilot
  • 项目简介:专注于机器人手部操作的模仿学习框架
  • 主要特点
    • 支持多模态数据输入
    • 提供完整的训练和部署流程
    • 包含丰富的预训练模型
1.4 Human2Humanoid (H2O)
  • 项目简介:LeCAR-Lab开发的人形机器人全身远程操作系统
  • 主要特点
    • 支持实时人体到人形机器人的动作映射
    • 处理人体与机器人之间的运动学差异
    • 包含平衡控制和物理约束
    • 支持多种人形机器人平台(如Unitree H1)
    • 提供完整的训练和部署流程
  • 相关论文
    • “Learning Human-to-Humanoid Real-Time Whole-Body Teleoperation” (IROS 2024)
    • “OmniH2O: Universal and Dexterous Human-to-Humanoid Whole-Body Teleoperation and Learning” (CoRL 2024)
  • GitHub地址:https://github.com/LeCAR-Lab/human2humanoid
  • 项目网站:https://omni.human2humanoid.com/
1.5 Motion Imitation
  • 项目简介:基于强化学习的动作模仿框架
  • 主要特点
    • 支持从视频中学习动作
    • 实现了从2D视频到3D动作的转换
    • 适用于多种人形机器人平台
  • GitHub地址:https://github.com/xbpeng/DeepMimic
1.6 Retargeting
  • 项目简介:动作重定向工具,将人体动作映射到不同机器人
  • 主要特点
    • 支持多种机器人模型
    • 处理不同骨骼结构的映射
    • 保持动作的语义一致性
1.7 LeRobot
  • 项目简介:专注于机器人学习与控制的综合框架
  • 主要特点
    • 提供多种机器人模型和控制算法
    • 支持从演示数据中学习策略
    • 包含丰富的预训练模型和工具
1.8 Perpetual Humanoid Control
  • 项目简介:用于实时模拟角色的持续人形控制框架
  • 主要特点
    • 支持长时间稳定的动作生成
    • 处理动作过渡和连续性
    • 适用于虚拟角色和机器人控制
  • 相关论文:Perpetual Humanoid Control for Real-Time Simulated Avatars (ICCV 2023)

2. 重要数据集

2.1 DAPG Dataset
  • 数据内容:包含多种机器人手部操作任务的演示数据
  • 数据规模:超过1000条高质量演示
  • 应用场景:物体操作、工具使用等任务
2.2 RoboTurk Dataset
  • 数据内容:包含人形机器人各种动作的演示数据
  • 数据规模:超过5000条演示
  • 应用场景:日常动作、运动技能等
2.3 Human3.6M
  • 数据内容:大规模人体动作捕捉数据集
  • 数据规模:超过360万个人体姿态
  • 应用场景:动作识别、姿态估计等
2.4 AMASS (Archive of Motion Capture as Surface Shapes)
  • 数据内容:大规模人体动作捕捉数据集,包含多种动作类型
  • 数据规模:超过40小时的3D人体动作数据,来自多个子数据集
  • 主要特点
    • 统一的参数化人体模型(SMPL)
    • 包含丰富的日常动作和运动技能
    • 提供完整的动作序列和对应的3D网格
  • 应用场景:动作生成、姿态估计、动作重定向等
  • 获取方式:https://amass.is.tue.mpg.de/
  • 在Human2Humanoid中的应用
    • 用于训练人形机器人的动作模型
    • 通过重定向技术将AMASS动作映射到特定人形机器人(如Unitree H1)
    • 提供丰富的动作库用于模仿学习
2.5 MoCap (Motion Capture) Datasets
  • CMU Motion Capture Database

    • 数据内容:包含各种动作类型,如走路、跑步、跳舞等
    • 数据规模:超过2600个动作序列
    • 应用场景:动作分析、动画生成等
    • 获取方式:http://mocap.cs.cmu.edu/
  • MPI-INF-3DHP Dataset

    • 数据内容:包含室内和室外场景的人体动作数据
    • 数据规模:超过1.3百万帧
    • 应用场景:3D人体姿态估计、动作识别等
    • 获取方式:https://vcai.mpi-inf.mpg.de/3dhp-dataset/
2.6 DHand
  • 数据内容:大规模手部动作数据集
  • 数据规模:超过100万帧手部动作数据
  • 应用场景:手部动作识别、机器人手部控制等
2.7 LeRobot Dataset
  • 数据内容:包含多种机器人任务的演示数据
  • 数据规模:超过10000条高质量演示
  • 主要特点
    • 包含多种机器人平台的数据
    • 涵盖日常任务和复杂操作
    • 提供完整的动作序列和状态信息
  • 应用场景:机器人学习、策略优化等

三、模仿学习的关键技术

1. 数据收集与预处理

  • 动作捕捉技术:光学捕捉、惯性传感器等
  • 数据清洗与标注:去除噪声、对齐时间序列等
  • 数据增强:添加随机扰动、时间扭曲等
  • 动作重定向:将人体动作映射到机器人骨骼结构

2. 模型架构设计

  • 状态表示:关节角度、末端位置、力传感器数据等
  • 动作空间:关节力矩、位置控制等
  • 网络结构:CNN、RNN、Transformer等
  • 人体模型:SMPL等参数化人体模型

3. 训练策略

  • 课程学习:从简单任务开始,逐步增加难度
  • 多任务学习:同时学习多个相关任务
  • 迁移学习:利用预训练模型加速学习
  • 强化学习:通过与环境交互优化策略

四、模仿学习与传统控制方法的对比

1. 传统机器人控制方法

1.1 基于模型的控制
  • 基本原理:利用机器人的动力学和运动学模型设计控制器
  • 主要方法
    • PID控制:基于误差反馈的经典控制方法
    • 计算力矩控制:利用逆动力学计算关节力矩
    • 模型预测控制(MPC):在线优化控制序列
    • 零力矩点(ZMP)控制:基于简化模型的双足平衡控制
  • 优势
    • 理论基础扎实,可分析性强
    • 控制精度高,稳定性好
    • 计算效率高,实时性好
  • 局限
    • 需要精确的机器人模型
    • 难以处理复杂环境和任务
    • 泛化能力有限,难以适应新场景
1.2 轨迹规划与优化
  • 基本原理:预先规划机器人的运动轨迹,然后跟踪执行
  • 主要方法
    • 路径规划:RRT、PRM等采样方法
    • 轨迹优化:基于动力学约束的优化
    • 混合零动力学(HZD):基于非线性控制的步态生成
  • 优势
    • 可以生成满足约束的可行轨迹
    • 能够处理复杂的目标函数
    • 可以离线计算,减少在线计算负担
  • 局限
    • 计算复杂度高,难以实时应用
    • 难以处理动态环境和不确定性
    • 需要大量参数调整和专家知识

2. 模仿学习与传统方法的对比

2.1 数据驱动 vs 模型驱动
  • 模仿学习
    • 基于数据驱动,从专家演示中学习策略
    • 不需要精确的机器人模型
    • 可以处理高维状态空间和复杂任务
    • 泛化能力强,可以适应新场景
  • 传统方法
    • 基于模型驱动,依赖精确的动力学模型
    • 需要大量参数调整和专家知识
    • 难以处理高维状态空间和复杂任务
    • 泛化能力有限,难以适应新场景
2.2 学习效率与样本复杂度
  • 模仿学习
    • 学习效率高,可以从少量演示中学习
    • 样本复杂度低,不需要大量交互数据
    • 可以快速部署到新任务和新机器人
  • 传统方法
    • 学习效率低,需要大量参数调整
    • 样本复杂度高,需要大量专家知识
    • 难以快速部署到新任务和新机器人
2.3 可解释性与安全性
  • 模仿学习
    • 可解释性较差,难以分析学习到的策略
    • 安全性难以保证,可能存在不可预期的行为
    • 需要额外的安全机制和约束
  • 传统方法
    • 可解释性强,可以分析控制器的行为
    • 安全性好,可以设计满足安全约束的控制器
    • 可以保证稳定性和鲁棒性
2.4 计算复杂度与实时性
  • 模仿学习
    • 训练阶段计算复杂度高,需要大量计算资源
    • 部署阶段计算复杂度低,可以实时应用
    • 适合在线学习和适应
  • 传统方法
    • 设计阶段计算复杂度高,需要大量专家知识
    • 部署阶段计算复杂度中等,部分方法可以实时应用
    • 难以在线学习和适应

3. 混合方法:结合模仿学习与传统控制

3.1 基于模型的模仿学习
  • 基本原理:将传统控制方法与模仿学习结合,利用模型信息指导学习
  • 主要方法
    • 基于模型的策略优化(MBPO):利用学习到的动力学模型加速策略学习
    • 基于模型的模仿学习(MBIL):利用动力学模型约束模仿学习
    • 基于模型的强化学习(MBRL):利用学习到的动力学模型加速强化学习
  • 优势
    • 结合了数据驱动和模型驱动的优势
    • 学习效率高,样本复杂度低
    • 可以保证安全性和稳定性
  • 应用案例
    • Human2Humanoid项目中的平衡控制和物理约束
    • DAPG中的基于演示的策略梯度算法
3.2 分层控制架构
  • 基本原理:将控制分为高层策略和低层控制器,高层策略由模仿学习获得,低层控制器由传统方法实现
  • 主要方法
    • 分层强化学习:高层策略由强化学习获得,低层控制器由传统方法实现
    • 分层模仿学习:高层策略由模仿学习获得,低层控制器由传统方法实现
    • 分层混合学习:高层策略由模仿学习和强化学习结合获得,低层控制器由传统方法实现
  • 优势
    • 结合了模仿学习和传统方法的优势
    • 可以处理复杂任务和高维状态空间
    • 可以保证安全性和稳定性
  • 应用案例
    • RoboTurk中的分层控制架构
    • DexPilot中的分层模仿学习

五、应用案例

1. 日常动作模仿

  • 抓取与放置:学习人类抓取物体的方式
  • 工具使用:学习使用工具的正确姿势
  • 日常交互:学习与环境的自然交互

2. 运动技能学习

  • 行走与跑步:学习自然的步态
  • 平衡控制:学习保持平衡的技巧
  • 动作组合:学习复杂的动作序列

3. 社交交互

  • 手势识别:理解人类的手势语言
  • 表情模仿:学习面部表情的变化
  • 身体语言:学习肢体语言的含义

4. 远程操作

  • 全身远程操作:通过人体动作控制人形机器人
  • 手部远程操作:控制机器人手部进行精细操作
  • 多模态远程操作:结合视觉、触觉等多种感官信息

六、未来展望

1. 技术发展趋势

  • 多模态学习:结合视觉、触觉等多种感官信息
  • 终身学习:持续从环境中学习和适应
  • 知识迁移:跨任务、跨机器人的知识迁移
  • 通用人形机器人控制:开发适用于多种人形机器人平台的控制框架
  • 混合控制方法:结合模仿学习和传统控制方法的优势

2. 应用前景

  • 家庭服务:提供更自然的家庭服务
  • 医疗康复:辅助病人进行康复训练
  • 教育培训:作为教学示范工具
  • 远程协作:通过人形机器人实现远程协作
  • 工业应用:在制造业中实现更灵活的人机协作

结语

模仿学习为人形机器人提供了一条快速掌握复杂技能的有效途径。通过系统学习和实践,我们可以让机器人更好地理解和模仿人类行为,为未来的人机协作打下坚实基础。随着Human2Humanoid等项目的不断发展,人形机器人的模仿学习能力将进一步提升,为更多实际应用场景提供支持。同时,结合传统控制方法的优势,我们可以开发出更加安全、稳定和高效的人形机器人控制系统。

参考文献

  1. RoboTurk: A Crowdsourcing Platform for Robot Learning from Demonstration
  2. Learning Complex Dexterous Manipulation with Deep Reinforcement Learning and Demonstrations
  3. DexPilot: Vision Based Teleoperation of Dexterous Robotic Hand-Arm System
  4. AMASS: Archive of Motion Capture as Surface Shapes
  5. Human2Humanoid: Real-time Human Motion Transfer to Humanoid Robots
  6. DeepMimic: Example-Guided Deep Reinforcement Learning of Physics-Based Character Skills
  7. Learning Human-to-Humanoid Real-Time Whole-Body Teleoperation (IROS 2024)
  8. OmniH2O: Universal and Dexterous Human-to-Humanoid Whole-Body Teleoperation and Learning (CoRL 2024)
  9. Perpetual Humanoid Control for Real-Time Simulated Avatars (ICCV 2023)
  10. Introduction to Humanoid Robotics (Kajita et al., 2014)
  11. Legged Robots that Balance (Raibert, 1986)
  12. Learning to Walk in Minutes Using Massively Parallel Deep Reinforcement Learning (Rudin et al., 2022)

免责声明

本文部分内容来源于网络公开资料,图片来源于网络。本文仅用于学习和交流,不用于商业用途。如有侵犯您的知识产权,请联系我们删除相关内容。感谢您的理解与支持。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

J先生x

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值