- 博客(34)
- 收藏
- 关注
原创 arXiv周刊 辅助科研的开源项目
arXiv 是计算机领域最重要的预印本平台,也是大家获取前沿成果的首选。但因为它发表速度快、审核相对宽松,导致每天新增的论文数量非常庞大。对于科研人员来说,想要在海量更新中找到高质量、有价值的论文,往往需要耗费大量时间进行筛选。希望能对各位的科研工作提供一点实质性的帮助,也欢迎在 GitHub 上提 Issue 交流。为例,内容涵盖了“多模态物理统一”、“视觉自回归 RL”以及“具身智能”等方向的研究。这不仅仅是一个简单的论文列表,而是一个结合了自动化工具与人工整理的筛选流程。
2026-01-08 16:58:30
206
原创 2026年1月第一周 ArXiv 计算机科学前沿文献深度研究报告
综合分析 2026 年 1 月 1 日至 7 日的 arXiv 文献,我们可以清晰地看到计算机科学,尤其是 AI 领域正在发生的深层次变革。
2026-01-08 10:28:22
724
原创 2023-2025年时间序列预测前沿全景报告:从线性反思到十亿级基础模型的范式重构
模型类别代表模型核心机制优势局限性线性模型分解, 全MLP极高效率, 强基线, 适合平稳数据难以捕捉极其复杂的非线性动态Transformer (专用)SOTA全样本性能, 捕捉长距离依赖需要针对特定数据集训练, 推理成本较高线性推理复杂度, 低显存, 长序列友好训练并行性不如Transformer, 生态尚在发展基础模型 (LLM)Time-LLM极强的少样本/零样本能力, 利用文本知识推理慢, 依赖底座LLM, 参数量巨大基础模型 (原生)通用性强, 支持任意变量/频率, 开箱即用。
2026-01-06 14:15:27
642
原创 2026第一轮时序大赛|LSTM vs iTransformer vs mHC-iTransformer vs TimeFilter vs PatchTST vs DUET 谁才是真SOTA?
本实验对比了6种主流时间序列预测模型(TimeFilter、iTransformer、MHC_iTransformer、PatchTST、LSTM、DUET)在多个领域数据集上的表现。实验采用统一的数据预处理和评估标准,重点关注96点预测任务。结果显示:PatchTST在ETTh2、ETTm1和Exchange数据集表现最优;TimeFilter在ETTm2和Weather数据集表现突出;MHC_iTransformer在降维后的Traffic和Electricity数据集取得最低误差;
2026-01-06 11:34:49
692
原创 2026年趋势深度解析:当能源管理遇上AI Agent——从“看见”到“自主行动”
能源管理正从可视化转向自主决策。2026年,AI Agent将重构能源系统,基于目标而非规则运行,形成多智能体协作网络:感知Agent预测需求,策略Agent制定最优方案,执行Agent安全控制硬件。
2026-01-05 14:07:08
920
原创 mHC-来自deepseek的新式残差实现方式(原文献解析)
DeepSeek-AI团队提出mHC(流形约束超连接)技术,通过将残差流扩展为多流连接并引入双拟随机矩阵约束,解决了大模型训练中的数值不稳定问题。
2026-01-05 09:47:40
740
原创 基于deepseek新论文提出的新残差结构开发的MHC-iTransformer
介绍新的基于Itransformer的变体模型,用于长时间序列多步预测。
2026-01-04 15:13:44
263
原创 mHC新架构在时间序列预测的应用 | 新SODA-基于DEEPSEEK新论文的mHC-iTransformer结构 (附带源码)
摘要 本实验验证了流形约束超连接(MHC)技术在时间序列预测中的有效性。通过将MHC集成到iTransformer架构中,替代传统残差连接,实现了多流信息的非线性聚合。实验采用电力负荷数据,对比MHC-iTransformer与原始iTransformer及PatchTST的性能。结果显示,MHC-iTransformer显著优于基准模型:MAPE降低22.3%,RMSE降低20.9%,NRMSE降低21.0%。训练过程中,MHC版本收敛更快且更稳定,能更准确地捕捉电力负荷的峰值和波动趋势。
2026-01-04 15:09:36
938
原创 基于AI Agent框架下的能源优化调度方案和实践 |工具函数介绍(详细)
本文档详细介绍了Energy-system-agent工具函数的技术实现,包含5个核心部分:1.统一返回格式和会话访问的基础辅助函数;2.会话管理工具,如启动建模会话;3.建模基础工具,包括代码执行和能源系统初始化;4.组件添加工具,如总线和源汇的添加;5.求解与结果处理工具,涉及模型求解和图表保存。这些工具通过标准化的JSON格式返回结果,并与IPython会话交互,支持能源系统建模的全流程操作,包括自动持久化完整脚本功能。
2026-01-04 13:35:46
762
原创 基于AI Agent框架下的能源优化调度方案和实践 | 代码实践(开源可用)
Energy-system-agent 是一个基于 LangChain Agent 的智能能源系统建模工具,通过自然语言交互简化复杂的能源系统建模过程。该项目将 oemof.solph 的核心功能封装为可对话调用的工具,支持从系统初始化、组件添加到求解优化的全流程。主要特点包括:1)自然语言交互降低建模门槛;2)持久化IPython环境支持迭代开发;3)自动调用求解器并支持结果可视化。该项目适用于科研验证和工程参数摸底,支持终端交互和API集成两种模式,让能源系统建模变得更高效便捷。
2026-01-04 12:02:35
1055
原创 基于AI Agent框架下的能源优化调度方案和实践 | 架构设计
本文提出了一种基于AI Agent框架的能源优化调度方案,采用分层工具系统与Agent推理引擎相结合的架构。系统包含数据预处理、建模、求解和分析四层工具集,通过LangChain Agent实现ReAct(推理-行动)循环机制,结合LangGraph进行状态持久化。该方案能自动理解需求、动态调整优化目标,并支持复杂能源场景的快速建模与求解,最终提供可解释的决策分析和可视化报告。典型应用流程包括场景定义、数据加载、模型构建和方案评估等步骤,适用于虚拟电厂等复杂能源系统的优化调度需求。
2025-12-31 11:40:16
446
原创 生产级 Agent:使用 LangSmith 进行可观测性和评估
利用langsmith来监控langgraph构建的agent是如何工作的,辅助agent开发,达到可观测、可评估、可追溯。
2025-12-26 10:06:23
723
原创 LangGraph Agent 架构基础:从概念到第一个可运行的Agent
这栏是介绍langgraph的,相比langchain来说,langgraph更为底层,可以说langchain就是基于langgraph封装好的更适合直接开发应用的框架,但langgraph以其更高的自由度和完备的轮子,让专业agent构建更加稳定可见。
2025-12-26 09:49:44
1016
原创 Langchain开发过程中的注意事项
本文总结了LangChain开发中的关键注意事项,包括Token成本控制、消息历史管理、工具定义规范等核心问题。
2025-12-25 11:34:40
944
原创 开发属于自己的Agent助手 | 第五期:部署你的Agent
本文介绍了如何将本地运行的AI Agent部署为可24/7运行的Web服务。首先解释了部署的概念和几种常见方式,推荐使用LangSmith Deployment结合本地服务器方案。随
2025-12-25 11:17:20
1010
原创 开发属于自己的Agent助手 | 第四期:对话记忆与上下文管理
不过记忆相关问题,现在只需要指定固定的线程id(langchain框架下)会自动实现上下文管理,也可以指定利用sqlite进行记忆的长久存储(配合checkpoints)
2025-12-24 09:19:09
412
原创 开发属于自己的Agent助手 | 第三期:工具集成与函数调用
本文介绍了如何为AI Agent添加工具功能,使其能够执行实际任务而非仅回答问题。
2025-12-24 09:16:53
1220
原创 开发属于自己的Agent助手 | 第二期:认识Agent & 第一个Assistant
本文介绍了AI助手(Agent)与传统大语言模型(LLM)的核心区别,并指导读者创建首个具有自主决策能力的AI助手。Agent通过"思考-行动"循环(ReAct模式)自主调用工具解决问题,而不仅是直接回答。文章详细解析了Agent的三大组成部分(LLM大脑、工具手脚、记忆系统),并通过具体代码示例展示了如何用LangChain框架创建基础助手。读者将学习到从环境配置到编写、运行第一个AI助手的完整流程,为后续开发更复杂的智能代理奠定基础。
2025-12-23 09:19:32
421
原创 分享一个我自己开发的简单Ubuntu服务器管理系统(可视化管理所有基于systemctl创建的持久性服务)
可视化管理所有挂载SYSTEMCTL的服务,这里我统一个人开发的各类服务挂在system上,利用.service文件管理服务配置,并利用本平台进行便捷的可视化管理。
2025-11-24 09:49:13
774
原创 基于VSCODE搭建可持续拓展的 Python 环境(服务器Linux或本地Windows)
分享一个我常用的管理python依赖和隔离工作区的方式
2025-11-24 09:37:42
306
原创 关于虚拟电厂项目的一些杂谈
本文探讨了虚拟电厂在国内的发展现状与盈利前景。作者认为,目前国内虚拟电厂项目多停留在示范和表面工程阶段,主要依赖需求响应,收益有限(单次响应仅几千元)。相比之下,国外已有成功商业案例(如德国Next Kraftwerke)。真正的盈利模式应聚焦灵活负载调整,参与多层次电力市场。技术方面,预测和优化调度算法并非核心壁垒,关键在于业务场景结合。虽然前景存在,但需依靠政策支持或技术深耕,单纯依赖需求响应难以持续盈利。建议等待电力市场进一步开放,同时做好技术储备。(148字)
2025-11-05 18:24:44
611
原创 虚拟电厂调度优化系统
本项目构建了一个基于oemof-solph框架的虚拟电厂调度优化系统,通过线性规划实现多能源资源协调运行。系统整合光伏、风电、燃气机组、储能及可调负荷等资源,采用CBC求解器进行成本最优调度。 主要特点: 支持源网荷储一体化建模 新增冷机/热机可调负荷功能 提供完整的可视化分析报告 采用YAML配置文件实现灵活参数管理 技术栈:Python 3.12+、oemof-solph 0.5、Pyomo 6.6、CBC求解器,可实现每小时2880个时间步长的优化调度。系统通过虚拟数据演示了从发电成本、储能调度到需求
2025-08-27 09:31:08
1038
2
原创 优化问题转强化学习(OPT-TO-RL)——基于强化学习(Python-DRL-SAC)的多能系统调度优化
能源优化问题转强化学习目前还处于学术探讨阶段,有相关的文献,也有一些课题组正在研究,但我在工业界的了解(电力系统相关),没有出现过已经落实的方案。
2024-12-03 15:42:59
1059
原创 能源系统优化?尝试下强化学习:基于强化学习(Python-DRL-SAC)的简单多能系统调度优化【测试篇,含完整测试代码】
在能源系统中,面对多样化的能源需求(如电力、热力、冷需求)和不确定的可再生能源供应(如风电、光伏),如何实现能源的高效调度成为一个重要问题。满足能源需求:保证电力、热力和冷需求的实时供应。优化储能设备使用:合理利用储能设备(如电池)进行充放电。碳捕集与成本控制:在满足低碳目标的同时,降低碳捕集设备的运行成本。传统方法往往基于线性规划或动态规划,难以应对系统的非线性、不确定性和高维特性。
2024-11-26 16:33:00
3404
10
原创 基于Pyomo实现简单源网荷储场景的储能电站调度优化
个人觉得如果考虑长期的求解稳定性,在当前最好能将项目确认到最新的python稳定版,cplex的python建模语言暂时无法在3.12环境中使用(一些开源求解器如cbc同样如此),但可以通过下载官方求解软件(激活后)调用软件求解。本帖是对个人的之前一个帖子的模型改用,由cplex建模python3.8迁移至python3.12的pyomo建模。
2024-11-22 09:49:24
1384
原创 基于pyomo的能源系统优化(多能+储能)【项目分享,学习经验分享贴】【持续更新ING】
pyomo建模清晰明了,调用求解器过程简单方便,目前在python3.12中可调用求解器包括:SCIP\GLPK\GUROBI,求解软件未测试,根据官方文档,在3.6~3.9python版本中应该还可以调用cbc、cplex(限制版)等。
2024-11-22 09:28:22
1217
1
原创 优化求解器Cplex(Python)在微网(源网荷储的简单场景)能源系统优化应用
在Python中通过Cplex求解器对简单微网多状态建模求解(入门版),欢迎学习讨论。
2024-10-18 17:14:18
1510
1
原创 [2024年8月] VScode tensorflow或pytorch无法识别调用Nvidia GPU
因为本人在配置GPU时无论如何创建python环境,切换cuda和torch等版本对应都无法解决识别问题,然后在一个外文论坛中找到此方案,故分享。以上解决方案可解决多数问题,如果是学校或个人用电脑可以考虑搭建Anocanda,可以快速搭建环境。
2024-08-15 15:32:49
1709
1
原创 如何快速入门机器学习,如何加入一场Kaggle机器学习公开竞赛项目,如何免费使用Kaggle notebook 的CPU、GPU、TPU资源
快速上手机器学习,免费的CPU、GPU、TPU资源,理想的Python编译环境
2024-07-18 13:36:59
1733
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅