- 博客(14)
- 收藏
- 关注
原创 分享一个我自己开发的简单Ubuntu服务器管理系统(可视化管理所有基于systemctl创建的持久性服务)
可视化管理所有挂载SYSTEMCTL的服务,这里我统一个人开发的各类服务挂在system上,利用.service文件管理服务配置,并利用本平台进行便捷的可视化管理。
2025-11-24 09:49:13
744
原创 基于VSCODE搭建可持续拓展的 Python 环境(服务器Linux或本地Windows)
分享一个我常用的管理python依赖和隔离工作区的方式
2025-11-24 09:37:42
284
原创 关于虚拟电厂项目的一些杂谈
本文探讨了虚拟电厂在国内的发展现状与盈利前景。作者认为,目前国内虚拟电厂项目多停留在示范和表面工程阶段,主要依赖需求响应,收益有限(单次响应仅几千元)。相比之下,国外已有成功商业案例(如德国Next Kraftwerke)。真正的盈利模式应聚焦灵活负载调整,参与多层次电力市场。技术方面,预测和优化调度算法并非核心壁垒,关键在于业务场景结合。虽然前景存在,但需依靠政策支持或技术深耕,单纯依赖需求响应难以持续盈利。建议等待电力市场进一步开放,同时做好技术储备。(148字)
2025-11-05 18:24:44
601
原创 虚拟电厂调度优化系统
本项目构建了一个基于oemof-solph框架的虚拟电厂调度优化系统,通过线性规划实现多能源资源协调运行。系统整合光伏、风电、燃气机组、储能及可调负荷等资源,采用CBC求解器进行成本最优调度。 主要特点: 支持源网荷储一体化建模 新增冷机/热机可调负荷功能 提供完整的可视化分析报告 采用YAML配置文件实现灵活参数管理 技术栈:Python 3.12+、oemof-solph 0.5、Pyomo 6.6、CBC求解器,可实现每小时2880个时间步长的优化调度。系统通过虚拟数据演示了从发电成本、储能调度到需求
2025-08-27 09:31:08
995
2
原创 优化问题转强化学习(OPT-TO-RL)——基于强化学习(Python-DRL-SAC)的多能系统调度优化
能源优化问题转强化学习目前还处于学术探讨阶段,有相关的文献,也有一些课题组正在研究,但我在工业界的了解(电力系统相关),没有出现过已经落实的方案。
2024-12-03 15:42:59
1038
原创 能源系统优化?尝试下强化学习:基于强化学习(Python-DRL-SAC)的简单多能系统调度优化【测试篇,含完整测试代码】
在能源系统中,面对多样化的能源需求(如电力、热力、冷需求)和不确定的可再生能源供应(如风电、光伏),如何实现能源的高效调度成为一个重要问题。满足能源需求:保证电力、热力和冷需求的实时供应。优化储能设备使用:合理利用储能设备(如电池)进行充放电。碳捕集与成本控制:在满足低碳目标的同时,降低碳捕集设备的运行成本。传统方法往往基于线性规划或动态规划,难以应对系统的非线性、不确定性和高维特性。
2024-11-26 16:33:00
3327
10
原创 基于Pyomo实现简单源网荷储场景的储能电站调度优化
个人觉得如果考虑长期的求解稳定性,在当前最好能将项目确认到最新的python稳定版,cplex的python建模语言暂时无法在3.12环境中使用(一些开源求解器如cbc同样如此),但可以通过下载官方求解软件(激活后)调用软件求解。本帖是对个人的之前一个帖子的模型改用,由cplex建模python3.8迁移至python3.12的pyomo建模。
2024-11-22 09:49:24
1362
原创 基于pyomo的能源系统优化(多能+储能)【项目分享,学习经验分享贴】【持续更新ING】
pyomo建模清晰明了,调用求解器过程简单方便,目前在python3.12中可调用求解器包括:SCIP\GLPK\GUROBI,求解软件未测试,根据官方文档,在3.6~3.9python版本中应该还可以调用cbc、cplex(限制版)等。
2024-11-22 09:28:22
1187
1
原创 优化求解器Cplex(Python)在微网(源网荷储的简单场景)能源系统优化应用
在Python中通过Cplex求解器对简单微网多状态建模求解(入门版),欢迎学习讨论。
2024-10-18 17:14:18
1470
1
原创 [2024年8月] VScode tensorflow或pytorch无法识别调用Nvidia GPU
因为本人在配置GPU时无论如何创建python环境,切换cuda和torch等版本对应都无法解决识别问题,然后在一个外文论坛中找到此方案,故分享。以上解决方案可解决多数问题,如果是学校或个人用电脑可以考虑搭建Anocanda,可以快速搭建环境。
2024-08-15 15:32:49
1679
1
原创 如何快速入门机器学习,如何加入一场Kaggle机器学习公开竞赛项目,如何免费使用Kaggle notebook 的CPU、GPU、TPU资源
快速上手机器学习,免费的CPU、GPU、TPU资源,理想的Python编译环境
2024-07-18 13:36:59
1707
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅