一、题目
一个分数一般写成两个整数相除的形式:N/M,其中 M 不为0。最简分数是指分子和分母没有公约数的分数表示形式。
现给定两个不相等的正分数 N1 /M1 和 N2 /M2 ,要求你按从小到大的顺序列出它们之间分母为 K 的最简分数。
输入格式:
输入在一行中按 N/M 的格式给出两个正分数,随后是一个正整数分母 K,其间以空格分隔。题目保证给出的所有整数都不超过 1000。
输出格式:
在一行中按 N/M 的格式列出两个给定分数之间分母为 K 的所有最简分数,按从小到大的顺序,其间以 1 个空格分隔。行首尾不得有多余空格。题目保证至少有 1 个输出。
输入样例:
7/18 13/20 12
输出样例:
5/12 7/12
作者: CHEN, Yue
单位: 浙江大学
时间限制: 400 ms
内存限制: 64 MB
代码长度限制: 16 KB
二、思路
坑点一:给定的两分数大小顺序是未知的
存在 N2 /M2小于N1 /M1 的情况;
难点一:确定上界、下界
答案要求(设N1/M1<N2/M2):
N / M ,N1 / M1 * K < N < N2 / M2 * K
下界L:
将N1 / M1 * K向上取整即可;不论整数或分数,都有L=ceil( N1 / M1 * K );
ceil() 向上取整
上界H:
若N1/M1K为整数,则只能取小于他的数;
若N1/M1K为小数,则可以取到向下取整的数;
难点二:是否为最简分数
最简分数,分子分母的最大公约数为1;
最大公约数求法:辗转相除法
int GCD(int A,int B)
{ return B==0 ? A : GCD(B,A%B); }
三、代码实现
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
int GCD(int A,int B)
{ return B==0 ? A : GCD(B,A%B); }
int main()
{
int N1,N2,M1,M2,N,M,flag=0;
scanf("%d/%d %d/%d %d",&N1,&M1,&N2,&M2,&M);
double L=1.0*N1*M/M1,H=1.0*N2*M/M2;//上、下界
if( L > H )
{
double temp=L;
L=H;
H=temp;
}
if( H == (int )H )
H--;
for(N=L+1 ; N<=H ; N++)
if( GCD(N,M) == 1 )
printf("%s%d/%d",flag++ ? " ":"",N,M);
}