代码随想录算法训练营第24天 |第七章 回溯算法part01

学习目标:

  • 理论基础
  • 77. 组合

学习内容:

回溯法用于解决的问题

组合问题:N个数里面按一定规则找出k个数的集合
切割问题:一个字符串按一定规则有几种切割方式
子集问题:一个N个数的集合里有多少符合条件的子集
排列问题:N个数按一定规则全排列,有几种排列方式
棋盘问题:N皇后,解数独等等

所有回溯法的问题都可以抽象为树形结构,因为回溯法解决的都是在集合中递归寻找子集,集合的大小就构成了树的宽度,递归的深度构成树的深度。
在这里插入图片描述

// 回溯法算法模板框架如下
void backtracking(参数) {
    if (终止条件) {
        存放结果;
        return;
    }
	//for横向遍历
    for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
        处理节点;
        //backtracking 纵向遍历
        backtracking(路径,选择列表); // 递归
        回溯,撤销处理结果
    }
}

77. 组合

class Solution {
public:
    vector<vector<int>> result; // 存放符合条件结果的集合
    vector<int> path; // 用来存放符合条件结果

    void backtracking(int n, int k, int startIndex){
        if(path.size()==k) //终止条件
            {
                result.push_back(path);//存放结果
                return;
            }
        for(int i = startIndex;i<=n;i++)
        {
            path.push_back(i); //处理节点
            backtracking(n,k,i+1); // 递归
            path.pop_back();//回溯,撤销处理的节点。
        }
    }

    vector<vector<int>> combine(int n, int k) {
        int startIndex = 1;
        backtracking(n,k,startIndex);
        return result;

    }
};

错误以及注意事项

  • 将代码和模板注释一一对应了,可以看出来这题还是很符合模板的。

学习时间:

2024.2.20 20:00-20:18 开学啦!以后每天晚上吃完晚饭不出意外就是leetcode和找工作的准备啦!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值