学习目标:
- 理论基础
- 77. 组合
学习内容:
回溯法用于解决的问题
组合问题:N个数里面按一定规则找出k个数的集合
切割问题:一个字符串按一定规则有几种切割方式
子集问题:一个N个数的集合里有多少符合条件的子集
排列问题:N个数按一定规则全排列,有几种排列方式
棋盘问题:N皇后,解数独等等
所有回溯法的问题都可以抽象为树形结构,因为回溯法解决的都是在集合中递归寻找子集,集合的大小就构成了树的宽度,递归的深度构成树的深度。
// 回溯法算法模板框架如下
void backtracking(参数) {
if (终止条件) {
存放结果;
return;
}
//for横向遍历
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
处理节点;
//backtracking 纵向遍历
backtracking(路径,选择列表); // 递归
回溯,撤销处理结果
}
}
77. 组合
class Solution {
public:
vector<vector<int>> result; // 存放符合条件结果的集合
vector<int> path; // 用来存放符合条件结果
void backtracking(int n, int k, int startIndex){
if(path.size()==k) //终止条件
{
result.push_back(path);//存放结果
return;
}
for(int i = startIndex;i<=n;i++)
{
path.push_back(i); //处理节点
backtracking(n,k,i+1); // 递归
path.pop_back();//回溯,撤销处理的节点。
}
}
vector<vector<int>> combine(int n, int k) {
int startIndex = 1;
backtracking(n,k,startIndex);
return result;
}
};
错误以及注意事项
- 将代码和模板注释一一对应了,可以看出来这题还是很符合模板的。
学习时间:
2024.2.20 20:00-20:18 开学啦!以后每天晚上吃完晚饭不出意外就是leetcode和找工作的准备啦!