深度学习篇

深度学习重点

反向梯度传播
BP算法的学习过程由正向传播过程和反向传播过程组成。在正向传播过程中,输入信息通过输入层经隐含层,逐层处理并传向输出层。如果在输出层得不到期望的输出值,则取输出与期望的误差的平方和作为目标函数,转入反向传播,逐层求出目标函数对各神经元权值的偏导数,构成目标函数对权值向量的梯量,作为修改权值的依据,网络的学习在权值修改过程中完成。误差达到所期望值时,网络学习结束
梯度下降法
梯度下降法就是沿梯度下降的方向求解损失函数极小值。
比如我们在一座大山上的某处位置,由于我们不知道怎么下山,于是决定走一步算一步,也就是在每走到一个位置的时候,求解当前位置的梯度,沿着梯度的负方向,也就是当前最陡峭的位置向下走一步,然后继续求解当前位置梯度,向这一步所在位置沿着最陡峭最易下山的位置走一步。
什么是神经网络
带有激活函数的多层感知机。
神经网络缺点:
神经网络中存在大量的参数,存在容易发生过拟合、训练时间长的缺点

深度学习取得成功的原因:

  • 大规模数据为深度学习提供了好的训练资源
  • 计算机硬件的飞速发展(GPU)使得训练大规模上网络成为可能

梯度消失、爆炸原因
梯度消失与梯度爆炸其实是一种情况,梯度消失经常出现,原因有两个:一是深层网络,二是采用不合适的损失函数,比如sigmoid。梯度爆炸一般出现在深层网络和权值初始化值太大的情况下
解决方案:

  • 预训练加微调
  • 梯度剪切、权重正则(针对梯度爆炸)
  • 使用不同的激活函数
  • 使用batchnorm
  • 使用残差结构
  • 使用LSTM网络

卷积神经网络重点

什么是感受野
感受野被定义为卷积神经网络特征所能看到输入图像的区域,换句话说特征输出受感受野区域内的像素点的影响。
什么是卷积神经网络:
卷积神经网络是一种带有卷积结构的深度神经网络,卷积结构可以减少深层网络占用的内存量,三个关键的操作:其一是局部感受野(局部连接),其二是权值共享,其三是池化层,有效的减少了网络的参数个数,缓解了模型的过拟合问题。
1)网络结构
卷积神经网络结构包括:卷积层,降采样层,全链接层。每一层有多个特征图,每个特征图通过一种卷积滤波器提取输入的一种特征,每个特征图有多个神经元。
2)局部感受野与权值共享
简化网络参数并使得网络具有一定程度的位移、尺度、缩放、非线性形变稳定性。
局部感受野:由于图像的空间联系是局部的,每个神经元不需要对全部的图像做感受,只需要感受局部特征即可,然后在更高层将这些感受得到的不同的局部神经元综合起来就可以得到全局的信息了,这样可以减少连接的数目。
权值共享:不同神经元之间的参数共享可以减少需要求解的参数,使用多种滤波器去卷积图像就会得到多种特征映射。权值共享其实就是对图像用同样的卷积核进行卷积操作,也就意味着第一个隐藏层的所有神经元所能检测到处于图像不同位置的完全相同的特征。其主要的能力就能检测到不同位置的同一类型特征,也就是卷积网络能很好的适应图像的小范围的平移性,即有较好的平移不变性
3)卷积层、下采样层、全连接层
卷积层:因为通过卷积运算我们可以提取出图像的特征,通过卷积运算可以使得原始信号的某些特征增强,并且降低噪声。
下采样层(池化层):因为对图像进行下采样,可以减少数据处理量同时保留有用信息,采样可以混淆特征的具体位置,因为某个特征找出来之后,它的位置已经不重要了,我们只需要这个特征和其他特征的相对位置,可以应对形变和扭曲带来的同类物体的变化。
全连接层:采用softmax全连接,得到的激活值即卷积神经网络提取到的图片特征。
卷积神经网络优点:

  • 一方面减少了权值的数量使得网络易于优化
  • 另一方面降低了模型的复杂度,也就是减小了过拟合的风险
  • 传统识别算法中复杂的特征提取和数据重建的过程,能够自行抽取图像的特征。
  • 识别位移、缩放及其他形式扭曲不变性的应用上具有良好的鲁棒性和运算效率

1*1卷积的主要作用
1、降维。比如,一张500 * 500且厚度depth为100 的图片在20个filter上做11的卷积,那么结果的大小为50050020。
2、加入非线性。卷积层之后经过激励层,1
1的卷积在前一层的学习表示上添加了非线性激励,提升网络的表达能力;
3、增加模型深度。可以减少网络模型参数,增加网络层深度,一定程度上提升模型的表征能力。

各个经典卷积神经网络

LeNet5
第一个CNN,小而全
AlexNet
1)使用ReLU作为CNN的激活函数,并验证了其在较深网络中的有效性,解决了Sigmod在网络较深时的梯度弥散问题。
2)训练时在最后几个全连接层使用Dropout随机忽略一部分神经元以避免模型过拟合
3)池化相互之间有覆盖,特升了特征的丰富性
4)提出LRN局部响应归一化层,如今已很少使用
5)数据增强,随机从256256的原始图像中截取224224大小的区域作为网络输入
6)使用CUDA加速深度卷积神经网络的训练
整个AlexNet有5个卷积层和3个全连接层。
VGGNet
a) 通过反复堆叠33的小型卷积核和22的最大池化层构建。
b) VGGNet拥有5段卷积,每一段卷积网络都会将图像的边长缩小一半,但将卷积通道数翻倍:64 —>128 —>256—>512 —>512 。这样图像的面积缩小到1/4,输出通道数变为2倍,输出tensor的总尺寸每次缩小一半。
c) 经常多个完全一样的33的卷积层堆叠在一起。相比于77的卷积核在保持效果不降低的同时减少了参数量,并且增加了
采用11和33的卷积核以及2*2的最大池化使得层数变得更深。常用VGGNet-16和VGGNet19
Google Inception Net 这个在控制了计算量和参数量的同时,获得了比较好的分类性能,和上面相比有几个大的改进:1、去除了最后的全连接层,而是用一个全局的平均池化来取代它; 2、引入Inception Module,这是一个4个分支结合的结构。所有的分支都用到了11的卷积,这是因为11性价比很高,可以用很少的参数达到非线性和特征变换。3、Inception V2第二版将所有的55变成2个33,而且提出来著名的Batch Normalization;4、Inception V3第三版就更变态了,把较大的二维卷积拆成了两个较小的一维卷积,加速运算、减少过拟合,同时还更改了Inception Module的结构。
微软ResNet残差神经网络
当网络一直加深时,准确率会趋于峰值,然后再加深网络准确率反而会下降(在训练集和测试集上均是如此,这显然就不是过拟合)。把这种现象称为退化问题。
1、引入高速公路结构,可以让神经网络变得非常深2、ResNet第二个版本将ReLU激活函数变成y=x的线性函数

目标检测

一、首先理解下“一步法”和“两步法”
two-stage方法,如R-CNN系算法
即是两步法:
– 第一步选取候选框
– 第二步对这些候选框分类或者回归

one-stage方法,如Yolo和SSD
即是一步法:
– 其主要思路是均匀地在图片的不同位置进行密集抽样
– 抽样时可以采用不同尺度和长宽比,然后利用CNN提取特征后直接进行分类与回归
– 整个过程只需要一步,所以其优势是速度快

二、YOLO
即是YOU ONLY LOOK ONCE,俗称“一次就好”,我陪你去看天荒地老。。。跑题了。

先回忆下 R-CNN 是怎么选取候选框进行目标识别的
– 可以近似总结为暴力法(实际上是用selective-search选了2000个左右的候选框),本质上是每一个尺寸每一个像素循环一遍
fast R-cnn
– 本质上就是提取候选框的速度比R-CNN快;
所有R-CNN的方法都是将目标检测分为两部分实现的:
– 1)物体的类别;分类问题。
– 2)物体的区域,即bounding box,回归问题。

回到YOLO:
– 是直接当做回归问题求解,输入图像经过处理,可以直接获取到图像中物体的类别及其confidence以及物体的位置。
– 具体方法是:
– YOLO将输入图像分为S×S个grid,每个grid负责检测落入其中的物体。
– 如果物体的中心位置落入该grid,则该grid就负责检测出这个问题。
– 每个grid输出B个bounding box的同时还要输出C个物体属于某类的confidence
– 从B个里面挑选IOU最大的那个bounding box,同时C是总共包含的类的类别。

三、补充说明:什么是grid,什么是IOU
grid是网格的意思,一般YOLO方法会把图片划分为 S*S 的网格,每个网格都负责检测物体并输出物体类别和位置,计算IOU

IOU,简单来讲就是模型产生的目标窗口和原来标记窗口的交叠率
– 具体计算:检测结果(DetectionResult)与 Ground Truth 的交集比上它们的并集,即为检测的准确率 IoU

人工智能常考问题

1、计算机专业相关的研究方向,要从中任选两个进行详细阐述
2、介绍一下梯度下降法是什么
4、机器学习和深度学习的差别联系
5、介绍下决策树的算法过程和剪枝方式,并介绍下其适用情景和优劣。说一下选择分支节点的几种参数(信息增益、增益率、基尼指数)
6、介绍下神经网络算法及深度学习原理
7、介绍下随机森林算法
8、介绍下Kmeans和KNN算法分别是什么
10、介绍下PCA算法过程
11、你用过哪种机器学习算法?举例说明?
13、两种算法 机器学习和算法
15、分类和聚类的关系

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值