NC20242 [SCOI2005]最大子矩阵(多维DP)

题目链接

题意:
给 一 个 n ∗ m 的 矩 阵 给一个n*m的矩阵 nm
找 出 k 个 不 相 交 矩 阵 使 和 最 大 找出k个不相交矩阵使和最大 k使
求 出 这 个 最 大 和 求出这个最大和
题解:
n < = 100 , m < = 2 , k < = 10 n<=100,m<=2,k<=10 n<=100,m<=2,k<=10
看 到 这 个 题 先 想 到 的 就 是 一 维 的 最 大 k 个 连 续 子 序 列 和 看到这个题先想到的就是一维的最大k个连续子序列和 k
如 果 是 2 个 可 以 进 行 预 处 理 求 值 如果是2个可以进行预处理求值 2
但 是 如 果 求 k 个 子 序 列 , 那 肯 定 需 要 状 态 转 移 但是如果求k个子序列,那肯定需要状态转移 k
列 一 个 d p [ n ] [ k ] , 前 n 个 数 分 为 k 组 列一个dp[n][k],前n个数分为k组 dp[n][k]nk
转 移 方 程 为 转移方程为
d p [ i ] [ k ] = m a x ( d p [ i ] [ k ] , d p [ j ] [ k − 1 ] + s u m [ i ] − s u m [ j ] ) dp[i][k]=max(dp[i][k],dp[j][k-1]+sum[i]-sum[j]) dp[i][k]=max(dp[i][k],dp[j][k1]+sum[i]sum[j])
这 个 d p 下 来 需 要 O ( n 2 k ) , 但 其 实 有 更 快 的 方 法 这个dp下来需要O(n^2k),但其实有更快的方法 dpO(n2k)
但 是 在 这 里 已 经 够 了 , 更 快 的 方 法 可 以 详 见 H D U 1024 但是在这里已经够了,更快的方法可以详见HDU1024 HDU1024
然 后 联 想 到 这 个 题 上 , 看 怎 么 样 能 转 移 到 这 个 题 然后联想到这个题上,看怎么样能转移到这个题

首 先 看 到 这 个 数 据 范 围 , 最 先 发 现 的 肯 定 是 这 个 m 的 范 围 首先看到这个数据范围,最先发现的肯定是这个m的范围 m
m < = 2 , 最 多 只 有 两 列 m<=2,最多只有两列 m<=2
那 说 明 , 对 于 每 一 块 矩 阵 , 要 不 宽 为 1 , 要 不 宽 为 2 那说明,对于每一块矩阵,要不宽为1,要不宽为2 12
那 我 们 完 全 可 以 求 出 两 列 的 最 大 k 个 连 续 子 序 列 和 , 然 后 进 行 合 并 那我们完全可以求出两列的最大k个连续子序列和,然后进行合并 k
同 时 维 护 两 列 , 那 就 可 以 列 出 d p [ n ] [ n ] [ k ] 同时维护两列,那就可以列出dp[n][n][k] dp[n][n][k]
在 第 一 列 选 i 个 , 第 二 列 选 j 个 , 总 共 k 组 的 最 大 值 在第一列选i个,第二列选j个,总共k组的最大值 ijk
对 于 每 一 列 的 求 法 , 我 们 用 上 述 的 转 移 方 程 进 行 转 移 对于每一列的求法,我们用上述的转移方程进行转移
现 在 需 要 考 虑 的 是 合 并 的 做 法 现在需要考虑的是合并的做法
就 是 出 现 如 果 有 两 列 可 以 并 在 一 起 比 单 独 一 列 大 的 情 况 就是出现如果有两列可以并在一起比单独一列大的情况
这 种 情 况 肯 定 是 在 i , j 相 等 的 时 候 这种情况肯定是在i,j相等的时候 ij
因 为 是 一 个 矩 阵 , 所 以 找 一 下 上 边 因为是一个矩阵,所以找一下上边
转 移 方 程 为 转移方程为
d p [ i ] [ j ] [ k ] = m a x ( d p [ i ] [ j ] [ k ] , d p [ p ] [ p ] [ k − 1 ] , s [ i ] − s [ p ] dp[i][j][k]=max(dp[i][j][k],dp[p][p][k-1],s[i]-s[p] dp[i][j][k]=max(dp[i][j][k],dp[p][p][k1],s[i]s[p]
此 时 的 s 表 示 的 是 两 列 共 同 的 和 , 这 时 候 就 进 行 了 对 两 列 的 合 并 此时的s表示的是两列共同的和,这时候就进行了对两列的合并 s
然 后 按 照 这 个 方 法 进 行 递 推 即 可 , 详 见 代 码 然后按照这个方法进行递推即可,详见代码
AC代码

/*
    Author:zzugzx
    Lang:C++
    Blog:blog.csdn.net/qq_43756519
*/
#include<bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define endl '\n'
#define SZ(x) (int)x.size()
typedef long long ll;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
const int mod=1e9+7;
//const int mod=998244353;
const double eps = 1e-10;
const double pi=acos(-1.0);
const int maxn=1e6+10;
const ll inf=0x3f3f3f3f;
const int dir[8][2]={{0,1},{1,0},{0,-1},{-1,0},{1,1},{1,-1},{-1,1},{-1,-1}};

int a[110][110];
int dp[110][110][20];
int s[110][3];
int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);cout.tie(0);
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    int n,m,t;
    cin>>n>>m>>t;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++){
            cin>>a[i][j];
            s[i][j]=s[i-1][j]+a[i][j];
        }
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
            for(int k=1;k<=t;k++){
                dp[i][j][k]=max(dp[i-1][j][k],dp[i][j-1][k]);
                for(int p=0;p<i;p++)
                    dp[i][j][k]=max(dp[i][j][k],dp[p][j][k-1]+s[i][1]-s[p][1]);
                for(int p=0;p<j;p++)
                    dp[i][j][k]=max(dp[i][j][k],dp[i][p][k-1]+s[j][2]-s[p][2]);
                if(i==j)
                    for(int p=0;p<i;p++)
                        dp[i][j][k]=max(dp[i][j][k],dp[p][p][k-1]+s[i][1]+s[j][2]-s[p][1]-s[p][2]);
            }
    cout<<dp[n][n][t];
    return 0;
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值