刷题记录:牛客NC20242[SCOI2005]最大子矩阵

传送门:牛客

题目描述:

这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大。
注意:选出的k个子矩阵 不能相互重叠
输入:
3 2 2
1 -3
2 3
-2 3
输出:
9

经典dp题,难度挺高.但是作为经典题,想不出来没关系最重要的的应该是记住这一类题目的解法

对于这道题,最重要的的是m的范围,我们发现m只有 1 或者 2 两个 1或者2两个 1或者2两个值可以选择.所以我们接下来就 m = 1 m=1 m=1 m = 2 m=2 m=2分开来分析

对于m=1

我们此时只有一列,因此我们可以使用 d p [ i ] [ j ] [ k ] dp[i][j][k] dp[i][j][k]记录前i行使用了j个矩阵并且当前矩阵是否使用的最大分值

那么我们考虑一下如何进行转移.首先假设我们当前的这一行是不取用的.那么显然的我们此时就直接沿用直接的即可,也就是
d p [ i ] [ j ] [ 0 ] = m a x ( d p [ i − 1 ] [ j ] [ 1 ] , d p [ i − 1 ] [ j ] [ 0 ] ) dp[i][j][0]=max(dp[i-1][j][1],dp[i-1][j][0]) dp[i][j][0]=max(dp[i1][j][1],dp[i1][j][0])

假设我们当前这一行是取用的,那么有两种可能性,要么我们这一行用了新的一个矩阵,要么和 之前的那一个矩阵合成一个矩阵,有
d p [ i ] [ j ] [ 1 ] = m a x ( d p [ i − 1 ] [ j ] [ 1 ] , d p [ i − 1 ] [ j − 1 ] [ 1 ] , d p [ i − 1 ] [ j − 1 ] [ 0 ] ) + a [ i ] [ 1 ] dp[i][j][1]=max(dp[i-1][j][1],dp[i-1][j-1][1],dp[i-1][j-1][0])+a[i][1] dp[i][j][1]=max(dp[i1][j][1],dp[i1][j1][1],dp[i1][j1][0])+a[i][1]

那么显然我们最后的答案就是 m a x ( d p [ n ] [ k ] [ 1 ] , d p [ n ] [ k ] [ 0 ] ) max(dp[n][k][1],dp[n][k][0]) max(dp[n][k][1],dp[n][k][0])

对于m=2

我们此时有两列了,所以显然是不能直接套用之前的模板了.但是我们此时可以类比之前的做法.此时我可以使用
0 状态记录这一行的两个数都不选 0状态记录这一行的两个数都不选 0状态记录这一行的两个数都不选
1 状态记录这一行记录左边的数字 1状态记录这一行记录左边的数字 1状态记录这一行记录左边的数字
2 状态记录右边的数字 2状态记录右边的数字 2状态记录右边的数字
3 状态记录这一行选两个数字但是两个数字是在同一个矩阵里 3状态记录这一行选两个数字但是两个数字是在同一个矩阵里 3状态记录这一行选两个数字但是两个数字是在同一个矩阵里
4 状态记录这一行选两个数字但是两个数字不在同一个矩阵里 4状态记录这一行选两个数字但是两个数字不在同一个矩阵里 4状态记录这一行选两个数字但是两个数字不在同一个矩阵里

那么对于0状态,显然我们直接转移前面的那一行即可:

d p [ i ] [ j ] [ 0 ] = m a x ( d p [ i − 1 ] [ j ] [ 0 / 1 / 2 / 3 / 4 ] ) dp[i][j][0]=max(dp[i-1][j][0/1/2/3/4]) dp[i][j][0]=max(dp[i1][j][0/1/2/3/4])

对于1状态,我们可以从前面的1,4状态进行转移也可以直接新开一个矩阵

d p [ i ] [ j ] [ 1 ] = m a x ( d p [ i − 1 ] [ j ] [ 1 / 4 ] ) + a [ i ] [ 1 ] dp[i][j][1]=max(dp[i-1][j][1/4])+a[i][1] dp[i][j][1]=max(dp[i1][j][1/4])+a[i][1]

d p [ i ] [ j ] [ 1 ] = m a x ( d p [ i − 1 ] [ j − 1 ] [ 0 / 1 / 2 / 3 / 4 ] ) + a [ i ] [ 1 ] dp[i][j][1]=max(dp[i-1][j-1][0/1/2/3/4])+a[i][1] dp[i][j][1]=max(dp[i1][j1][0/1/2/3/4])+a[i][1]

对于2状态,我们可以从前面的2,4状态转移也可以直接新开一个矩阵

d p [ i ] [ j ] [ 2 ] = m a x ( d p [ i − 1 ] [ j ] [ 2 / 4 ] ) + a [ i ] [ 2 ] dp[i][j][2]=max(dp[i-1][j][2/4])+a[i][2] dp[i][j][2]=max(dp[i1][j][2/4])+a[i][2]

d p [ i ] [ j ] [ 2 ] = m a x ( d p [ i − 1 ] [ j − 1 ] [ 0 / 1 / 2 / 3 / 4 ] ) + a [ i ] [ 2 ] dp[i][j][2]=max(dp[i-1][j-1][0/1/2/3/4])+a[i][2] dp[i][j][2]=max(dp[i1][j1][0/1/2/3/4])+a[i][2]

对于3状态,我们可以从状态3转移,也可以直接新开一个矩阵

d p [ i ] [ j ] [ 3 ] = m a x ( d p [ i − 1 ] [ j ] [ 3 ] ) + a [ i ] [ 1 ] + a [ i ] [ 2 ] dp[i][j][3]=max(dp[i-1][j][3])+a[i][1]+a[i][2] dp[i][j][3]=max(dp[i1][j][3])+a[i][1]+a[i][2]

d p [ i − 1 ] [ j − 1 ] [ 3 ] = m a x ( d p [ i − 1 ] [ j − 1 ] [ 0 / 1 / 2 / 3 / 4 ] ) + a [ i ] [ 1 ] + a [ i ] [ 2 ] dp[i-1][j-1][3]=max(dp[i-1][j-1][0/1/2/3/4])+a[i][1]+a[i][2] dp[i1][j1][3]=max(dp[i1][j1][0/1/2/3/4])+a[i][1]+a[i][2]

对于4状态,我们可以从状态1,2,3进行转移,但是此时如果是1,2将需新开一个矩阵(因为我们此时只有一边是存在的),如果是4不用开矩阵,当然也可以新开一个矩阵

d p [ i ] [ j ] [ 4 ] = m a x ( d p [ i − 1 ] [ j ] [ 4 ] , d p [ i − 1 ] [ j − 1 ] [ 1 / 2 ] ) + a [ i ] [ 1 ] + a [ i ] [ 2 ] dp[i][j][4]=max(dp[i-1][j][4],dp[i-1][j-1][1/2])+a[i][1]+a[i][2] dp[i][j][4]=max(dp[i1][j][4],dp[i1][j1][1/2])+a[i][1]+a[i][2]

d p [ i ] [ j ] [ 4 ] = m a x ( d p [ i − 1 ] [ j − 2 ] [ 0 / 1 / 2 / 3 / 4 ] ) dp[i][j][4]=max(dp[i-1][j-2][0/1/2/3/4]) dp[i][j][4]=max(dp[i1][j2][0/1/2/3/4])

至此,我们的dp方程结束了

下面是具体的代码部分:

#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <string.h>
#include <stack>
#include <deque>
using namespace std;
typedef long long ll;
#define inf 0x3f3f3f3f
#define root 1,n,1
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
inline ll read() {
	ll x=0,w=1;char ch=getchar();
	for(;ch>'9'||ch<'0';ch=getchar()) if(ch=='-') w=-1;
	for(;ch>='0'&&ch<='9';ch=getchar()) x=x*10+ch-'0';
	return x*w;
}
#define maxn 1000000
#define ll_maxn 0x3f3f3f3f3f3f3f3f
const double eps=1e-8;
int n,m,k;
int dp[200][200][10];
int a[200][200];
int main() {
	n=read();m=read();k=read();
	for(int i=1;i<=n;i++) {
		for(int j=1;j<=m;j++) {
			a[i][j]=read();
		}
	}
	memset(dp,-0x3f,sizeof(dp));
	for(int i=1;i<=4;i++) dp[0][0][i]=0;
	if(m==1) {
		for(int i=1;i<=n;i++) {
			for(int j=0;j<=k;j++) {
				dp[i][j][0]=max(dp[i-1][j][0],dp[i-1][j][1]);
				if(j) dp[i][j][1]=max(dp[i-1][j][1],max(dp[i-1][j-1][0],dp[i-1][j-1][1]))+a[i][1];
			}
		}
		cout<<max(dp[n][k][0],dp[n][k][1])<<endl;
	}else {
		for(int i=1;i<=n;i++) {
			for(int j=0;j<=k;j++) {
				for(int q=0;q<=4;q++) dp[i][j][0]=max(dp[i][j][0],dp[i-1][j][q]);
				if(j) {
					dp[i][j][1]=max(dp[i][j][1],max(dp[i-1][j][1],dp[i-1][j][4]))+a[i][2];
					for(int q=0;q<=4;q++) dp[i][j][1]=max(dp[i][j][1],dp[i-1][j-1][q]+a[i][2]);
					dp[i][j][2]=max(dp[i][j][2],max(dp[i-1][j][2],dp[i-1][j][4]))+a[i][1];
					for(int q=0;q<=4;q++) dp[i][j][2]=max(dp[i][j][2],dp[i-1][j-1][q]+a[i][1]);
					dp[i][j][3]=max(dp[i][j][3],dp[i-1][j][3])+a[i][1]+a[i][2];
					for(int q=0;q<=4;q++) dp[i][j][3]=max(dp[i][j][3],dp[i-1][j-1][q]+a[i][1]+a[i][2]);
					if(j>1) {
						dp[i][j][4]=max(dp[i][j][4],max(max(dp[i-1][j-1][1],dp[i-1][j-1][2]),dp[i-1][j][4]))+a[i][1]+a[i][2];
						for(int q=0;q<=4;q++) dp[i][j][4]=max(dp[i][j][4],dp[i-1][j-2][q]+a[i][1]+a[i][2]);
					}
					
				}
			}
		}
		int ans=-inf;
		for(int i=0;i<=4;i++) ans=max(ans,dp[n][k][i]);
		cout<<ans<<endl;
	}
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值