西瓜书第九章习题及答案

博客主要介绍了使用Python实现Kmeans聚类,展示了K=3时多次运行的结果并进行可视化。分析指出,k-means算法选的初始点离得越远越易收敛,聚类效果越好,算法好坏与初始样本选取关系很大。

9.4

在这里插入图片描述

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
dataset=pd.read_csv('F:\\python\\dataset\\watermelon_4.csv', delimiter=",")
data=dataset.values
data

data:
在这里插入图片描述

Kmeans实现

import random
#距离
def distance(x1,x2):
    return sum((x1-x2)**2)
#Kmeans实现

def Kmeans(D,K,maxIter):#return K points and the belongings of every points
    m,n=np.shape(D)
    if K>=m:return D
    initSet=set()
    curK = K  #聚类簇数
    while(curK>0): #随机选择K个样本作为均值向量
        randomInt = random.randint(0,m-1) #随机一个[0,29]的整数
        if randomInt not in initSet:
            curK-=1
            initSet.a
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值