牛顿迭代(C语言非递归)

        算法说明已经写在了代码里面,使用牛顿迭代需要一定的高数基础。

        代码如下:

//牛顿迭代算法
//牛顿迭代算法,原型源于导数定义的变形
//f(x) = g(x) - h(x),求f(x)的根。
//令f(x) = 0,则有g(x)-h(x) = 0.
//有Xk+1 = Xk - f(Xk)/f(Xk)'
//例:求n的平方根,有f(x) = x^2 - n = 0
//Xk+1 = Xk - ((Xk)^2 - n)/2Xk
//Xk+1 = (Xk^2 +n)/2Xk  -> Xk+1 = (Xk + n/Xk)/2
//结束迭代的条件为Xk+1 = Xk
//以上就是基本思路,代码实现如下:

#include <stdio.h>

float niudun(int);

int main(){
    int result1 = (int)((niudun(25)+0.5)*10/10); //进行四舍五入操作
    int result2 = (int)((niudun(27)+0.5)*10/10); //进行四舍五入操作
    int result3 = (int)((niudun(35)+0.5)*10/10); //进行四舍五入操作
    int result4 = (int)((niudun(36)+0.5)*10/10); //进行四舍五入操作
    int result5 = (int)((niudun(0)+0.5)*10/10); //进行四舍五入操作
    printf("%d\n",result1);
    printf("%d\n",result2);
    printf("%d\n",result3);
    printf("%d\n",result4);
    printf("%d\n",result5);

    return 0;
}

float niudun(int num){
    float result = 0;
    if(num !=0 ){//num为0,则直接返回0
        //设置最开始的Xk为num的一半,降低迭代次数
        float Xk = num/2.0;
        while(1){
            result = (Xk+num/Xk)/2;
            if(result == Xk){
                //当牛顿迭代结束时,结束条件为Xk+1 = Xk
                break;
            }else{
                Xk = result;
            }
        }
    }
    return result;
}

        输出结果:

如有bug,请各位大佬批评指正。ORZ~~~

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值