给定一个长度为 n
的 0 索引整数数组 nums
。初始位置为 nums[0]
。
每个元素 nums[i]
表示从索引 i
向前跳转的最大长度。换句话说,如果你在 nums[i]
处,你可以跳转到任意 nums[i + j]
处:
0 <= j <= nums[i]
i + j < n
返回到达 nums[n - 1]
的最小跳跃次数。生成的测试用例可以到达 nums[n - 1]
。
示例 1:
输入: nums = [2,3,1,1,4] 输出: 2 解释: 跳到最后一个位置的最小跳跃数是2
。 从下标为 0 跳到下标为 1 的位置,跳1
步,然后跳3
步到达数组的最后一个位置。
示例 2:
输入: nums = [2,3,0,1,4] 输出: 2
提示:
1 <= nums.length <= 104
0 <= nums[i] <= 1000
- 题目保证可以到达
nums[n-1]
思考过程(贪心算法):
参考第一个跳跃游戏的题解想到,对于每一个节点都会有一个最大可到达的节点。假设节点i,值为nums[i],则节点i可以到达的节点为i+0,i+1..i+nums[i]。从这些节点里面再找一个跨度最大的节点作为起点,直到到达终点。
举个例子nums = [2,3,1,1,4],最开始的时候位于0,此时值为2,也就是从0可以到达0、1、2这三个位置。在这三个位置中,1的值为3,也即从1可以直接到4,而2的值为1,也即从2只能到3。因此下一个节点选择1。此时1+3>=4,结束。
代码如下:
int jump(int* nums, int numsSize){
if(numsSize==1){//大小为1直接返回
return 0;
}
int index = 0,canreach = -1,maxreach = -1,step = 0;
while(index < numsSize-1){//未到达终点
if(index+nums[index] >= numsSize-1){//如果此节点加上此节点的值已经可以到达终点则步数加1并结束
step++;
break;
}
canreach = index + nums[index];//获取此节点可到达的节点
for(int i = index;i <= canreach;i++){//从此节点出发找到可以跨越最大距离的节点
if(i + nums[i] >= maxreach){
maxreach = i + nums[i];
index = i;
}
}//循环结束,index会跳到下一步可以跨越最大距离的节点上,步数加一
step++;
}
return step;
}
代码成绩: