注意:
- 通过WordCount程序为例进行调试
- 是在本地模式进行的,所以N个MapTask 和 N个 ReduceTask没有并行的效果。
- 如果在集群上,N个 MapTask 和 N 个ReduceTask 是并行运行.
一、 Job提交的流程
方法层级:1 > 1) > (1) > <1> > ① > [1] > {1}
1. job.waitForCompletion(true); //在Driver中提交job
1)sumbit() //提交
(1)connect():
<1>return new Cluster(getConfiguration());
/*
通过YarnClientProtocolProvider或LocalClientProtocolProvider
根据配置文件的参数信息获取当前job需要执行到本地还是Yarn
最终:LocalClientProtocolProvider ==> LocalJobRunner
*/
① initialize(jobTrackAddr, conf);
//提交job
(2) return submitter.submitJobInternal(Job.this, cluster);
// 检查job的输出路径。
<1> .checkSpecs(job);
<2> . Path jobStagingArea = JobSubmissionFiles.getStagingDir(cluster, conf);
//生成Job提交的临时目录:
//D:\tmp\hadoop\mapred\staging\Administrator1777320722\.staging
<3> . JobID jobId = submitClient.getNewJobID(); //为当前Job生成Id
<4> . Path submitJobDir = new Path(jobStagingArea, jobId.toString());
//Job的提交路径d:/tmp/hadoop/mapred/staging/Administrator1777320722/.staging/job_local1777320722_0001
<5> . copyAndConfigureFiles(job, submitJobDir);
① rUploader.uploadResources(job, jobSubmitDir);
[1] uploadResourcesInternal(job, submitJobDir);
{1}.submitJobDir = jtFs.makeQualified(submitJobDir);
//创建Job的提交路径
mkdirs(jtFs, submitJobDir, mapredSysPerms);
//生成切片信息 ,并返回切片的个数
<6> . int maps = writeSplits(job, submitJobDir);
//通过切片的个数设置MapTask的个数
<7> . conf.setInt(MRJobConfig.NUM_MAPS, maps);
//将当前Job相关的配置信息写到job提交路径下
<8> . writeConf(conf, submitJobFile);
//此时通过查看发现路径下有: job.split job.splitmetainfo job.xml xxx.jar
//此时才真正提交Job
<9> .status = submitClient.submitJob(jobId, submitJobDir.toString(), job.getCredentials());
//等job执行完成后,删除Job的临时工作目录的内容
<10> . jtFs.delete(submitJobDir, true);
二、 MapTask的工作机制
1. 从Job提交流程代码解析里面的的(2)--><9> 进去
//构造真正执行的Job , LocalJobRunnber$Job
Job job = new Job(JobID.downgrade(jobid), jobSubmitDir);
2. LocalJobRunnber$Job 的run()方法
1)TaskSplitMetaInfo[] taskSplitMetaInfos = SplitMetaInfoReader.readSplitMetaInfo(jobId, localFs, conf, systemJobDir);// 读取job.splitmetainfo
2)int numReduceTasks = job.getNumReduceTasks(); // 获取ReduceTask个数
3) // 根据切片的个数, 创建执行MapTask的 MapTaskRunnable
List<RunnableWithThrowable> mapRunnables = getMapTaskRunnables(taskSplitMetaInfos, jobId, mapOutputFiles);
4)ExecutorService mapService = createMapExecutor(); // 创建线程池
5) runTasks(mapRunnables, mapService, "map"); //执行 MapTaskRunnable
6) 因为Runnable提交给线程池执行,接下来会执行MapTaskRunnable的run方法。
7) 执行 LocalJobRunner$Job$MapTaskRunnable 的run()方法.
(1) MapTask map = new MapTask(systemJobFile.toString(), mapId, taskId,info.getSplitIndex(), 1); //创建MapTask对象
(2) map.run(localConf, Job.this); //执行MapTask中的run方法
<1> .runNewMapper(job, splitMetaInfo, umbilical, reporter);
① org.apache.hadoop.mapreduce.TaskAttemptContext taskContext = JobContextImpl
② org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE> mapper = WordConutMapper
③ org.apache.hadoop.mapreduce.InputFormat<INKEY,INVALUE> inputFormat = TextInputFormat
④ split = getSplitDetails(new Path(splitIndex.getSplitLocation()),
splitIndex.getStartOffset();
//重构切片对象
//切片对象的信息 : file:/D:/input/inputWord/JaneEyre.txt:0+36306679
⑤org.apache.hadoop.mapreduce.RecordReader<INKEY,INVALUE> input = MapTask$NetTrackingRecordReader
⑥output = new NewOutputCollector(taskContext, job, umbilical, reporter); //构造缓冲区对象
[1] collector = createSortingCollector(job, reporter); //获取缓冲区对象
MapTask$MapOutputBuffer
{1} . collector.init(context); //初始化缓冲区对象
1>>.final float spillper = job.getFloat(JobContext.MAP_SORT_SPILL_PERCENT, (float)0.8);// 默认溢写百分比 0.8
2>>.final int sortmb = job.getInt(MRJobConfig.IO_SORT_MB,MRJobConfig.DEFAULT_IO_SORT_MB); // 默认缓冲区大小 100M
3>>.sorter = ReflectionUtils.newInstance(job.getClass(MRJobConfig.MAP_SORT_CLASS, QuickSort.class,IndexedSorter.class), job);
// 排序对象。排序使用的是快排,并且只是基于索引排序。
4>> . // k/v serialization // kv序列化
5>> . // output counters // 计数器
6>> . // compression // 压缩
7>> . // combiner // combiner
⑦ mapper.run(mapperContext);// 执行WordCountMapper中的run方法。 实际执行的是WordCountMapper继承的Mapper中的run方法。
[1] . 在Mapper中的run方法中 : map(context.getCurrentKey(), context.getCurrentValue(), context);//执行到WordCountMapper中的map方法。
[2] . 在WordCountMapper中的map方法中将kv写出 : context.write(outK,outV);
三、 Shuffle流程(溢写,归并)
1. map中的kv持续往 缓冲区写, 会达到溢写条件,发生溢写,最后发生归并。
2. map中的 context.write(k,v)
1) . mapContext.write(key, value);
(1). output.write(key, value);
<1> collector.collect(key, value,partitioner.getPartition(key, value, partitions));
// 将map写出的kv 计算好分区后,收集到缓冲区中。
<2> . 当满足溢写条件后 ,开始发生溢写
startSpill();
① spillReady.signal(); //线程间通信,通知溢写线程开始溢写
② 溢写线程调用 sortAndSpill() 方法发生溢写操作
③ final SpillRecord spillRec = new SpillRecord(partitions);
final Path filename = mapOutputFile.getSpillFileForWrite(numSpills, size);
out = rfs.create(filename)
//根据分区的个数,创建溢写文件:
/tmp/hadoop-Administrator/mapred/local/localRunner/Administrator/jobcache/job_local277309786_0001/attempt_local277309786_0001_m_000000_0/output/spill0.out
④ sorter.sort(MapOutputBuffer.this, mstart, mend, reporter); // 溢写前先排序
⑤ writer.close(); 通过writer进行溢写,溢写完成后,关闭流,可以查看磁盘中的溢写文件
⑥ if (totalIndexCacheMemory >= indexCacheMemoryLimit)
// create spill index file
Path indexFilename =mapOutputFile.getSpillIndexFileForWrite(numSpills, partitions
// 判断索引使用的内存空间是否超过限制的大小,如果超过也需要溢写到磁盘
⑦ map持续往缓冲区写,达到溢写条件,就继续溢写 ........ 可能整个过程中发生N次溢写。
⑧ MapTask中的runNewMapper 中 output.close(mapperContext);
假如上一次溢写完后,剩余进入的到缓冲区的数据没有达到溢写条件,那么当map中的所有的数据
都已经处理完后,在关闭output时,会把缓冲区中的数据刷到磁盘中(其实就是没有达到溢写条件的数据也要写到磁盘)
[1] collector.flush(); //刷写
{1} . sortAndSpill(); 通过溢写的方法进行剩余数据的刷写
{2} . 最后一次刷写完后,磁盘中会有N个溢写文件
spill0.out spill1.out .... spillN.out
{3} . 归并 mergeParts();
>>1. for(int i = 0; i < numSpills; i++) {
filename[i] = mapOutputFile.getSpillFile(i);
finalOutFileSize += rfs.getFileStatus(filename[i]).getLen();
}
//根据溢写的次数,得到要归并多少个溢写文件
>>2. Path finalOutputFile = mapOutputFile.getOutputFileForWrite(finalOutFileSize);
/tmp/hadoopAdministrator/mapred/local/localRunner/Administrator/jobcache/job_local1987086776_0001/attempt_local1987086776_0001_m_000000_0/output/file.out
Path finalIndexFile = mapOutputFile.getOutputIndexFileForWrite(finalIndexFileSize);
/tmp/hadoop-Administrator/mapred/local/localRunner/Administrator/jobcache/job_local1987086776_0001/attempt_local1987086776_0001_m_000000_0/output/file.out.index
//生成最终存储数据的两个文件
>>3. for (int parts = 0; parts < partitions; parts++) {
// 按照分区的, 进行归并。
>>4. awKeyValueIterator kvIter = Merger.merge(job, rfs,
keyClass, valClass, codec,
segmentList, mergeFactor,
new Path(mapId.toString()),
job.getOutputKeyComparator(), reporter, sortSegments,
null, spilledRecordsCounter, sortPhase.phase(),
TaskType.MAP);
//归并操作
>>5 Writer<K, V> writer = new Writer<K, V>(job, finalPartitionOut, keyClass, valClass, codec,spilledRecordsCounter);
//通过writer写归并后的数据到磁盘
>>6 .
if (combinerRunner == null || numSpills < minSpillsForCombine) {
Merger.writeFile(kvIter, writer, reporter, job);
} else {
combineCollector.setWriter(writer);
combinerRunner.combine(kvIter, combineCollector);
}
在归并时,如果有combine,且溢写的次数大于等于minSpillsForCombine的值3才会使用Combine
>>7.
for(int i = 0; i < numSpills; i++) {
rfs.delete(filename[i],true);
}
归并完后,将溢写的文件删除
>> 8. 最后在磁盘中存储map处理完后的数据,等待reduce的拷贝。
file.out file.out.index
四、 ReduceTask工作机制
1. 在LocalJobRunner$Job中的run()方法中
if (numReduceTasks > 0) {
//根据reduceTask的个数,创建对应个数的LocalJobRunner$Job$ReduceTaskRunnable
List<RunnableWithThrowable> reduceRunnables = getReduceTaskRunnables(
jobId, mapOutputFiles);
//线程池
ExecutorService reduceService = createReduceExecutor();
//将 ReduceTaskRunnable提交给线程池执行
runTasks(reduceRunnables, reduceService, "reduce");
}
1) . 执行LocalJobRunner$Job$ReduceTaskRunnable 中的run方法
(1) . ReduceTask reduce = new ReduceTask(systemJobFile.toString(),reduceId, taskId, mapIds.size(), 1);
//创建ReduceTask对象
(2) . reduce.run(localConf, Job.this); // 执行ReduceTask的run方法
<1> . runNewReducer(job, umbilical, reporter, rIter, comparator,
keyClass, valueClass);
[1] . org.apache.hadoop.mapreduce.TaskAttemptContext taskContext = TaskAttemptContextImpl
[2] . org.apache.hadoop.mapreduce.Reducer<INKEY,INVALUE,OUTKEY,OUTVALUE> reducer = WordCountReducer
[3] . org.apache.hadoop.mapreduce.RecordWriter<OUTKEY,OUTVALUE> trackedRW = ReduceTask$NewTrackingRecordWriter
[4] . reducer.run(reducerContext);
//执行WordCountReducer的run方法 ,实际执行的是WordCountReducer继承的Reducer类中的run方法.
{1} .reduce(context.getCurrentKey(), context.getValues(), context);
//执行到WordCountReducer中的 reduce方法.
{2} . context.write(k,v) 将处理完的kv写出.
>>1 . reduceContext.write(key, value);
>>2 . output.write(key, value);
>>3 . real.write(key,value); // 通过RecordWriter将kv写出
>>4 . out.write(NEWLINE); //通过输出流将数据写到结果文件中