缺陷定位-------论文阅读:采用基于多样性的过采样方法来缓解软件缺陷预测中的类不平衡问题

针对软件缺陷预测中的类不平衡问题,文章提出了一种名为MAHAKIL的新方法。该方法通过基于遗传理论和Mahalanobis距离的多样性过采样,生成多样化的合成少数类样本,以降低错误率并提高模型性能。这种方法避免了传统过采样方法可能导致的过度泛化,提高了召回率和精确度。
摘要由CSDN通过智能技术生成

MAHAKIL: Diversity Based Oversampling Approach to Alleviate the Class Imbalance Issue in Software Defect Prediction

前言


在做缺陷预测或者是其它分类任务的同时,高度不匹配的数据通常会使任务变得困难,往往采用合成过采样方法通过创建新的少数缺陷模块来平衡类分布来解决这一问题。尽管这些方法取得了成功,但它们大多导致过度泛化。

一、基本信息?

Ebo Bennin, K, Keung, J, Phannachitta, P, Monden, A, & Mensah, S. (2018). Mahakil: diversity based oversampling approach to alleviate the class imbalance issue in software defect prediction. IEEE Transactions on Software Engineering, 1-1.

二、文章内容

1.主要问题

The main problem is that common prediction algorithms assume that the
classes in any dataset are equally balanced. Thus, models trained o

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值