Keras学习笔记
Keras简介
keras是一个用python编写的高级神经网络API,它能够以TensorFlow、CNTK,或者是Theano作为后端运行
开发重点是支持快速的实验。能够以最小的时延把你的想法转化为实验结果,是做好研究的关键。
优点
用户友好。Keras是为人类而不是为机器设计的APl。它把用户体验放在首要和中心位置。Keras 遵循减少认知困难的最佳实践:它提供一致且简单的API,将常见用例所需的用户操作数量降至最低,并且在用户错误时提供清晰和可操作的反馈。
高度模块化
模型被理解为由独立的、完全可配置的模块构成的序列或图。这些模块可以以尽可能少的限制组装在一起。特别是神经网络层、损失函数、优化器、初始化方法、激活函数、正则化方法,它们都是可以结合起来构建新模型的模块。
易扩展性。新的模块是很容易添加的(作为新的类和函数),现有的模块已经提供了充足的示例。由于能够轻松地创建可以提高表现力的新模块,Keras更加适合高级研究。
基于Python实现。Keras没有特定格式的单独配置文件。模型定义在 Python代码中,这些代码紧凑,易于调试,并且易于扩展。
同时支持卷积神经网络和循环神经网络,以及两者的组合
在CPU和GPU上无缝运行
这么多的深度学习框架,为何要选择keras?
Keras是为人类而非机器设计的APl。Keras 遵循减少认知困难的最佳实践:它提供一致且简单的API,它将常见用例所需的用户操作数量降至最低&#