题目: 给定一棵二叉树,你需要计算它的直径长度。一棵二叉树的直径长度是任意两个结点路径长度中的最大值。这条路径可能穿过根结点。
给定二叉树 返回 3, 它的长度是路径 [4,2,1,3] 或者 [5,2,1,3]
1
/ \
2 3
/ \
4 5
不能直接拿根节点的左、右子树深度和sum作为答案,因为这个直径可能不经过根节点;
注意: 用深度求出来得到的leftDepth+rightDepth+1 是直径上的节点数,直径是:节点数-1
方法1. (双重递归,麻烦)对每个节点遍历,求其左右子树深度
int ans = 0;
public int diameterOfBinaryTree(TreeNode root) {
if (root == null) return 0;
int leftDepth = treeDepth(root.left);
int rightDepth = treeDepth(root.right);
// tmp 是当前直径(tmp+1 是节点数!! )
int tmp = leftDepth + rightDepth;
ans = Math.max(ans, tmp);
diameterOfBinaryTree(root.left);
diameterOfBinaryTree(root.right);
return ans;
}
int treeDepth(TreeNode root) { // 求树的深度
if (root == null) return 0;
return Math.max(treeDepth(root.left), treeDepth(root.right)) + 1;
}
方法2. (单递归)在求树深度过程中,更新全局ans,这样就不用双递归了
int ans = 0;
public int diameterOfBinaryTree(TreeNode root) {
if (root == null) return 0;
treeDepth(root);
return ans;
}
int treeDepth(TreeNode root) { // 求树的深度
if (root == null) return 0;
int leftDepth = treeDepth(root.left);
int rightDepth = treeDepth(root.right);
// 在得到root的左右子树深度之后,可以计算出来过root的一条路径长度:leftDepth + rightDepth
ans = Math.max(ans, leftDepth + rightDepth);// 更新ans, (直径是节点数-1)
return Math.max(leftDepth, rightDepth) + 1;
}