【每日一题】2500. 删除每行中的最大值
2500. 删除每行中的最大值
题目描述
给你一个 m x n 大小的矩阵 grid ,由若干正整数组成。
执行下述操作,直到 grid 变为空矩阵:
从每一行删除值最大的元素。如果存在多个这样的值,删除其中任何一个。
将删除元素中的最大值与答案相加。
注意 每执行一次操作,矩阵中列的数据就会减 1 。
返回执行上述操作后的答案。
示例 1:
输入:grid = [[1,2,4],[3,3,1]]
输出:8
解释:上图展示在每一步中需要移除的值。
- 在第一步操作中,从第一行删除 4 ,从第二行删除 3(注意,有两个单元格中的值为 3 ,我们可以删除任一)。在答案上加 4 。
- 在第二步操作中,从第一行删除 2 ,从第二行删除 3 。在答案上加 3 。
- 在第三步操作中,从第一行删除 1 ,从第二行删除 1 。在答案上加 1 。
最终,答案 = 4 + 3 + 1 = 8 。
示例 2:
输入:grid = [[10]]
输出:10
解释:上图展示在每一步中需要移除的值。
- 在第一步操作中,从第一行删除 10 。在答案上加 10 。
最终,答案 = 10 。
提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 50
1 <= grid[i][j] <= 100
解题思路
思路1:将每一行按照从大到小排序或者从小到大排序,然后逐列取出最大值并加入到结果中。(升序或者降序对结果无影响)
class Solution {
public:
int deleteGreatestValue(vector<vector<int>>& grid) {
int res=0;
int m=grid.size();
int n=grid[0].size();
for(auto &g:grid)
sort(g.begin(),g.end());
for(int j=0;j<n;j++)
{
int maxn=INT_MIN;
for(int i=0;i<m;i++)
{
maxn=max(maxn,grid[i][j]);
}
//cout<<"maxn:"<<maxn<<endl;
res+=maxn;
}
return res;
}
};
思路2:为每一行构建一个大根堆,然后逐行依次取出堆顶并加入到结果中。
class Solution {
public:
int deleteGreatestValue(vector<vector<int>>& grid) {
int m=grid.size();
int n=grid[0].size();
//每一行一个大根堆
vector<priority_queue<int>> pq(m);
//每行一个大根堆
for(int i=0;i<m;i++)
{
//每行存储列个
for(int j=0;j<n;j++)
{
pq[i].emplace(grid[i][j]);
}
}
int res=0;
//总共列个循环
for(int j=0;j<n;j++)
{
int maxlen=INT_MIN;
//每行一个数
for(int i=0;i<m;i++)
{
maxlen=max(maxlen,pq[i].top());
pq[i].pop();
}
res+=maxlen;
}
return res;
}
};
总结:C++中二维数组按照每一行从大到小排序或者从小到大排序,只能是外层循环,然后内层进行sort!!!