比赛:https://marketing.csdn.net/p/f3e44fbfe46c465f4d9d6c23e38e0517
Intel® DevCloud for oneAPI:https://devcloud.intel.com/oneapi/get_started/aiAnalyticsToolkitSamples/
oneAPI
import intel_extension_for_pytorch as ipex
# Device configuration
device = torch.device('xpu' if torch.cuda.is_available() else 'cpu')
model = VAE().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
'''
Apply Intel Extension for PyTorch optimization against the model object and optimizer object.
'''
model, optimizer = ipex.optimize(model, optimizer=optimizer)
VAE模型实现手写数字识别任务
手写数字识别是一种常见的机器学习和计算机视觉任务,旨在识别手写的数字字符并将其分类为数字 0 到 9 中的一个。这个任务通常用于展示和验证机器学习算法和模型的性能。
任务描述:
- 输入:手写的数字字符图像,通常是灰度图像,每个像素代表一个像素点的亮度值。
- 输出:识别出的数字,范围从 0 到 9。
任务步骤:
- 数据收集:收集包含手写数字的图像数据集,通常是包含大量手写数字图像的数据集,如 MNIST 数据集。
- 数据预处理:对图像进行预处理,包括图像缩放、归一化、去噪等,以便输入模型进行训练和测试。
- 模型选择:选择适合手写数字识别任务的模型,常用的有卷积神经网络(CNN)等。
- 模型训练:使用训练数据对模型进行训练,通过反向传播优化模型参数,以最小化损失函数。
- 模型评估:使用测试数据评估模型的性能,计算识别准确率、损失值等指标。
- 预测和应用:使用训练好的模型对新的手写数字图像进行预测,输出识别结果。
- 手写数字识别任务在计算机视觉领域具有重要意义,不仅为图像分类提供了一个基本示例,还为更复杂的任务如物体识别、人脸识别等提供了基础。这个任务也常常被用于展示深度学习技术的能力,因为它相对简单且容易理解。
使用了pytorch以及Intel® Optimization for PyTorch,通过优化扩展了 PyTorch,使英特尔硬件的性能进一步提升,让手写数字识别问题更加的快速高效

使用MNIST数据集,该数据集包含了一系列以黑白图像表示的手写数字,每个图像的大小为28x28像素,数据集组成如下:
- 训练集:包含60,000个图像和标签,用于训练模型。
- 测试集:包含10,000个图像和标签,用于测试模型的性能。
每个图像都被标记为0到9之间的一个数字,表示图像中显示的手写数字。这个数据集常常被用来验证图像分类模型的性能,特别是在计算机视觉领域。
定义使用包
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from torchvision import transforms
from torchvision.utils import save_image
import intel_extension_for_pytorch as ipex
定义参数
# Device configuration
device = torch.device('xpu' if torch.cuda.is_available() else 'cpu')
# Create a directory if not exists
sample_dir = 'samp

本文介绍了如何使用oneAPI和PyTorch实现手写数字识别任务,通过VAE模型,包括数据预处理、模型定义、训练过程和Intel优化,展示了如何在Intel硬件上提高性能。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



