数学建模
星码
有效的程序员不应该浪费很多时间用于程序调试,他们应该一开始就不要把故障引入。
展开
-
数学建模 --- 绘制三维图
1. 网格图 2. 曲线图 3. 隐函数图 4. 符号函数图原创 2020-09-05 22:25:02 · 3330 阅读 · 0 评论 -
数学建模 --- 预测方法:时间序列分析
1. 时间序列模型 2. 时间序列论文原创 2020-09-04 02:56:59 · 7374 阅读 · 6 评论 -
数学建模 --- K-means、系统聚类 与 DBSCAN
1. K-means、系统聚类 与 DBSCAN 2. 重点:SPSS求系统聚类原创 2020-08-26 09:48:11 · 2588 阅读 · 2 评论 -
数学建模 --- 分类模型:逻辑回归 与 LDA
1. 逻辑回归(logistic regression) 2. Fisher线性判别分析 --- LDA原创 2020-08-23 21:29:56 · 3203 阅读 · 0 评论 -
数学建模 --- 蒙特卡洛模拟使用的一些函数
1. 产生随机数 2. 记录运行时间 3. 显示长数字格式 4. 画线段原创 2020-08-19 23:31:04 · 1401 阅读 · 0 评论 -
数学建模 --- 多元线性回归扰动项满足的条件
1. 扰动项的检验是否满足某些条件 2. 扰动项产生异方差解决 3. 扰动项产生多重共线性解决原创 2020-08-17 23:16:45 · 4153 阅读 · 0 评论 -
数学建模 --- 使用工具进行描述性统计
描述性统计:最大值,最小住,平均值,方差,相关系数原创 2020-08-17 15:51:18 · 1842 阅读 · 0 评论 -
数学建模 --- 预测性与解释性回归: 多元线性回归用Stata分析
1. 多元线性回归(解释性回归与预测性回归) 2. Stata对数据描述性统计 3. 对横截面数据进行Stata回归 4. Stata标准化回归 4. 回归前需要进行扰动项的检测原创 2020-08-16 19:59:18 · 14848 阅读 · 3 评论 -
数学建模 --- 图类问题:计算最短路径 与 在某个距离范围内的点
1. 对图进行可视化 2. 计算最短路径 3. 求在某个距离范围内的点原创 2020-08-09 17:04:27 · 1647 阅读 · 0 评论 -
数学建模 ---斯皮尔曼相关系数
1. 斯皮尔曼spearman相关系数 2. 计算P值与显著性标记原创 2020-08-07 15:41:36 · 12094 阅读 · 0 评论 -
数学建模 --- 皮尔逊相关系数假设检验的条件
1.皮尔逊相关系数假设检验 2.判读数据是否是正态分布的三种方法原创 2020-08-04 12:22:43 · 12514 阅读 · 0 评论 -
数学建模 --- 皮尔逊相关系数
1.皮尔逊相关系数的概念 2.如何计算皮尔逊相关系数 3.相关系数可视化与显著性标注原创 2020-08-03 01:41:00 · 8549 阅读 · 0 评论 -
数学建模 --- 拟合法
1. 拟合法定义 2. matlab拟合工具箱(Curve Fitting Tool) 3. 对已知的函数如何直接画出图形原创 2020-08-02 17:16:28 · 2919 阅读 · 0 评论 -
数学建模 --- 插值法
插值法插值法定义插值方法拉格朗日插值法(插值多项式)拉格朗日插值不足 --- 龙格现象分段插值n维数据插值插值法定义构造一个函数,需要这个函数完全过给定点对于构造函数:插值方法拉格朗日插值法(插值多项式)三个点时n个点时拉格朗日插值不足 — 龙格现象当插值函数的阶数nnn越大时,在两端的波动极大,会产生明显的震荡分段插值分段线性插值每两个点之间分别构成一个线段,只用到了最近的两个点分段二次插值选最近的n个已知点,构造n-1次函数例如:选最近的3个点,构造一个二次函数牛原创 2020-07-31 18:11:35 · 1078 阅读 · 0 评论 -
数学建模 --- 优劣解距离法(Topsis模型)
优劣解距离法(Topsis模型)应用场景层次分析法的局限性中,当决策层的指标的数据时已知而不是通过主观给出时,需要使用优劣解距离法(Topsis模型)指标类型极大性指标 — 效益型指标极小性指标 — 成本型指标统一指标类型 — 指标正向化将极小型指标转化为极大型指标:max−xmax - xmax−x标准化处理为了消去量纲的影响计算指标得分...原创 2020-07-28 00:25:38 · 1011 阅读 · 0 评论 -
数学建模 --- 层次分析法(AHP模型)
评价类问题:目标为了达到这个目标的方案评价方案的准则选出相关指标,求各个指标之间的权重 和 对某个指标而言各个选择权重(分而治之思想):将所选择的指标两两比较,根据比较结果求权重两两比较指标的重要程度(注意比较时不要发生逻辑不一致):得到判断矩阵(正互反矩阵):例如:问题:从苏杭,北戴河,桂林选择一个地方旅行评判指标: 景色 花费 居住 饮食 交通一致矩阵各行(各列)成 倍数关系 且 为判断阵注意在使用判断矩阵求权重前,一定要进行一致性检验。进行一致性检验:原创 2020-07-24 12:44:50 · 6225 阅读 · 0 评论