先练他几十道DP,就不信还不会
题意:大体就是求等差子序列的个数(公差可以为负)
定义 d[i][j] 表示以 i 结尾且公差为 j(j>=0) 的子序列的个数
定义 f[i][j] 表示以 i 结尾且公差为 j(j<0) 的子序列的个数
有了状态表示状态转移就很明显了
代码:
#include <bits/stdc++.h>
#define ll long long
#define IOS std::ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
template<class T> inline void read(T &x){
x=0; register char c=getchar(); register bool f=0;
while(!isdigit(c))f^=c=='-',c=getchar();
while(isdigit(c))x=x*10+c-'0',c=getchar(); if(f)x=-x;
}
using namespace std;
ll a[2005];
ll mod=998244353;
ll d[1005][20004];
ll f[1005][20004];
int visz[20004];
int visf[20004];
int main()
{
ll n;
cin>>n;
for(int i=1;i<=n;i++)
{cin>>a[i];}
ll ans=n;
queue<ll> q;
for(int i=1;i<=n;i++)
{
for(int j=i-1;j>=1;j--)
{
ll op=a[i]-a[j];
if(op>=0)
{
d[i][op]=(d[i][op]+d[j][op]+1)%mod;
if(visz[op]==0)
{
q.push(op);
visz[op]=1;
}
}
else
{
f[i][-op]=(f[i][-op]+f[j][-op]+1)%mod;
if(visf[-op]==0)
{
q.push(op);
visf[-op]=1;
}
}
}
while(!q.empty())
{
ll u=q.front();
q.pop();
if(u>=0)
{
visz[u]=0;
ans=(ans+d[i][u])%mod;
}
else
{
visf[-u]=0;
ans=(ans+f[i][-u])%mod;
}
}
}
cout<<ans<<endl;
return 0;
}