简要题意:
求一个数列中有多少个等差子序列。(子序列 不一定连续,子串 一定连续)
注:公差可以是负数。
算法一
对于 30 % 30 \% 30% 的数据, n ≤ 20 n \leq 20 n≤20.
显然,枚举子序列,然后暴力验证。
时间复杂度: O ( 2 n × n ) O(2^n \times n) O(2n×n).
实际得分: 30 p t s 30pts 30pts.
算法二
对于 60 % 60 \% 60% 的数据, n ≤ 100 n \leq 100 n≤100, v ≤ 2 × 1 0 3 v \leq 2 \times 10^3 v≤2×103.
枚举等差数列前 2 2 2 项,然后算出公差,往后枚举即可。
时间复杂度: O ( n 3 ) O(n^3) O(n3).
实际得分: 60 p t s 60pts 60pts ~ 100 p t s 100pts 100pts.(取决于程序常数)
算法三
对于另外 20 % 20 \% 20% 的数据,所有电塔的高度构成一个等差数列。
显然,这时答案就相当于在 1 1 1 ~ n n n 中取等差数

这篇博客详细介绍了如何解决一个寻找数列中等差子序列数量的问题。作者提供了四种不同的算法,从简单的暴力枚举到动态规划优化,逐步提升效率,覆盖了不同数据范围的解决方案。算法四采用动态规划,时间复杂度为O(n^2),可得满分。
最低0.47元/天 解锁文章
2037





