RMQ问题之ST算法(求某区间内的最大最小值)(C语言)

文末有poj题目AC代码

eg:省略题目了hh,我们要的是模板嘛
也可以参考:

nyoj 119 士兵杀敌(三)
以下是解题过程(本人也是一枚小白所以用C了,也比较直观)详细解释都在代码注释中

#include<stdio.h>
#include<math.h>
void st(int n);
int max(int a,int b)
{
  if(a>b)
  return a;
  return b;
}
int a[10001],n;
int dp[10001][16];//用dp[i][j]表示从i到i+2^j-1的最小值(长度显然为2^j);DP记忆数组; 
int main(void)//就是求dp[l][log(2底数)(r)]的过程~~ 
{
 int q,i,j;
 int l,r,k;
 while(scanf("%d",&n)!=EOF)
 {
  for(i=1;i<=n;i++)
  scanf("%d",&a[i]);
  st(n);
  scanf("%d",&q);
  for(i=1;i<=q;i++)
  {
   scanf("%d %d",&l,&r);
   k=(int)(log(r-l+1.0)/log(2.0));//其实就是转换为2为底数的过程; //区间长度r-l+1
   printf("%d\n",max ( dp[l][k],dp[r-(1<<k)+1][k] ) );//dp[l][log(2底数)(r)]
    //(其实这里是有重复的,因为k是向下取整的,只不过不影响结果,又完全覆盖两个区间) 
   // != printf("%d\n",max( dp[l][k],dp[l+( 1<< k ) ][k] ) ); //不能写成这样 ; **因为数组下标必须是整数所以无法避免遗漏,导致结果不准确; 
   
  }
  printf("\n");
 }
 return 0;
}
void st(int n)
{
 int i,j;
 for(i=1;i<=n;i++)
 dp[i][0]=a[i];//到本身当然自己最大了
 for(j=1;(1<<j)<=n;j++){//1<<1 表示左移一位 即乘以2; 1<<j表示2的j次方; 
  for(i=1;i+(1<<j)-1<=n;i++)//小于n是为了不越界dp[大于n(那表示什么呢)]【】; 正如11行所说
  dp[i][j]= max(dp[i][j-1],dp[i+(1<< (j-1) )][j-1] );/*我们把F[i,j]平均分成两段(因为F[i,j]一定是偶数个数字,可以说这两个区间没有重复区间),
  从 i 到i + 2 ^ (j - 1) - 1为一段,i + 2 ^ (j - 1)到i + 2 ^ j - 1为一段(长度都为2 ^ (j - 1))。
  于是我们得到了状态转移方程F[i, j]=max(F[i,j-1], F[i + 2^(j-1),j-1])。*/
 }
 return; 
}

//!=printf("%d\n",dp[l][k] );因为当(l-r+1)是2的整数次方答案正确,不是整数次方,k是向下取整的,则 l+ 2^k < r ;明显遗漏了一部分导致答案错误

核心是(模板)

void st(int n)
{
 int i,j;
 for(i=1;i<=n;i++)
 dp[i][0]=a[i];
 for(j=1;(1<<j)<=n;j++){
  for(i=1;i+(1<<j)-1<=n;i++)
  dp[i][j]= max(dp[i][j-1],dp[i+(1<< (j-1) )][j-1] );
  }
 return; 
}

以上是我学习的心得,如有错误欢迎指出

上面那个程序输出似乎讲的不着边,只需要看两个地方就行了:

1.状态转移方程
2.输出的方程

还需要注意的就是 + ,-运算符的优先级大于“<<”和 “>>”,注意加括号
poj3264Balanced Lineup
AC代码:

//#include<bits/stdc++.h>//万能头文件poj不支持
//using namespace std;
#include<iostream>
#include<math.h>
//#include<algorithm>
#define max(a,b) ((a) > (b) ? (a) : (b))
#define min(a,b) ((a) < (b) ? (a) : (b))
#define MAXN 50005
int n;
int a[MAXN];
int dpb[MAXN][16];//存最大值 
int dps[MAXN][16];//存最小值 
void st()
{
	for(int i=1;i<=n;i++)
	dpb[i][0]=dps[i][0]=a[i];
	
	for(int j=1;(1<<j)<=n;j++)
	for(int i=1;i+(1<<j)-1<=n;i++)
	dpb[i][j]=max(dpb[i][j-1],dpb[i+(1<<(j-1))][j-1]);//长度为偶数一定可以平均分 
	
	for(int j=1;(1<<j)<=n;j++)
	for(int i=1;i+(1<<j)-1<=n;i++)
	dps[i][j]=min(dps[i][j-1],dps[i+(1<<(j-1))][j-1]);//长度为偶数一定可以平均分 
	//从 i 到i + 2 ^ (j - 1) - 1为一段,i + 2 ^ (j - 1)到i + 2 ^ j - 1为一段(长度都为2 ^ (j - 1))
	return;
}//注意 +-运算符的优先级大于“<<” ">>"
int main(void)
{
	int q;
	scanf("%d %d",&n,&q);
	for(int i=1;i<=n;i++){
		scanf("%d",&a[i]);
	}
	st();
	while(q--)
	{
		int l,r;
		scanf("%d %d",&l,&r);
		int k=(int)(log(r-l+1.0)/log(2.0));// log a (b)=lg(b)/lg(a)
		//printf("%d\n",max(dpb[l][k],dpb[r-(1<<k)+1][k]));//k是向下取整的故此区间不能平均分 
		int big=max(dpb[l][k],dpb[r-(1<<k)+1][k]);
		//printf("MAX:%d\n",big);
		int smal=min(dps[l][k],dps[r-(1<<k)+1][k]);
		//printf("smal:%d\n",smal);
		printf("%d\n",big-smal);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值