RMQ算法 快速求区间最大最小值

RMQ基本上就是来求区间嘴子问题的

maxsum【i】【j】表示从数字num【】下表i开始的后1<<j个数的最大值minsum为最小值 

开始初始化两个数组

        for(i=1;i<=n;i++)
        {
            maxsum[i][0]=minsum[i][0]=num[i];
        }


然后dp经行跟新

    int k=log2(n);
    for(j=1;j<=k;j++)
    for(i=1;i<=n;i++)
    if(i+(1<<j)-1<=n)
    {
        maxsum[i][j]=max(maxsum[i][j-1], maxsum[i+(1<<(j-1))][j-1]);
        minsum[i][j]=min(minsum[i][j-1], minsum[i+(1<<(j-1))][j-1]);
    }



至于查询    对i-j之间的最值   o(1)的时间复杂度;

k=(int)log2((double)(j-i+1));

Max=max(maxsum【i,k-1】,maxsum【i+(1<<(j-1))+1】【k】);

Min=max(minsum【i,k-1】,minsum【i+(1<<(j-1))+1】【k】);



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值