剑指 Offer 10- II. 青蛙跳台阶问题
难度:⭐
题目描述:
一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
示例 1:
输入:n = 2
输出:2
示例 2:
输入:n = 7
输出:21
示例 3:
输入:n = 0
输出:1
提示:
0 <= n <= 100
来源:力扣(LeetCode)
👽解决方案:
设跳上 n 级台阶有 f(n)种跳法。在所有跳法中,青蛙的最后一步只有两种情况: 跳上 1 级或 2 级台阶。
当为 1 级台阶: 剩 n-1 个台阶,此情况共有 f(n-1)种跳法;
当为 2 级台阶: 剩 n-2 个台阶,此情况共有 f(n-2) 种跳法
所有的情况:f(n) = f(n-1) + f(n-2)
经典的斐波拉契数列计算
class Solution {
public int numWays(int n) {
int a = 1;
int b = 1;
int sum = 0;
for(int i = 0;i < n;i++){
sum = (a + b) % 1000000007;
a = b;
b = sum;
}
return a;
}
}
PS:若内容有错误欢迎留言指正🚩!若内容对您有帮助欢迎点赞👍!