动态规划复习01

        今天重新将动态规划中几种常见的背包问题重新温习了一下,代码重新理解了一下,将背包问题的模板记录在此。

1. 01背包问题

(1)朴素做法:

#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1010;
int n, m; // n表示物品个数,m表示背包的体积
int v[N], w[N];  // v[i]表示每件物品的体积,w[i]表示每件物品的价值
int f[N][N]; //f[N][N]表示物品数不超过N(第一个),总价值不超过N(第二个)的总价值

int main(){
    cin >> n >> m;
    for(int i = 1; i <= n; i++) cin >> v[i] >> w[i];
    for(int i = 1; i <= n; i++){
        for(int j = 1; j <= m; j++){
            f[i][j] = f[i - 1][j];
            if (j >= v[i]){
                f[i][j] = max(f[i - 1][j], f[i - 1][j - v[i]] + w[i]);
            }
        }
    }
    cout << f[n][m] << endl;
    
    return 0;
}

 (2)优化版本

#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1010;
int n, m;
int v[N], w[N], f[N];
int main(){
    cin >> n >> m;
    for(int i = 1; i <= n; i++) cin >> v[i] >> w[i];
    for(int i = 1; i <= n; i++){
        for(int j = m; j >= v[i]; j --){
            f[j] = max(f[j], f[j - v[i]] + w[i]);
        }
    }
    cout << f[m] << endl;
    return 0;
}

2. 完全背包问题

(1)朴素做法

#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1010;
int n, m, v[N], w[N], f[N][N];
int main(){
    cin >> n >> m;
    for(int i = 1; i <= n; i++) cin >> v[i] >> w[i];
    for(int i = 1; i <= n; i++){
        for(int j = 0; j <= m; j++){
            for(int k = 0; k * v[i] <= j; k++){
                f[i][j] = max(f[i][j], f[i - 1][j - k * v[i]] + k * w[i]);
            }
        }
    }
    cout << f[n][m] << endl;
    return 0;
}

(2)优化做法

#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1010;
int n, m, v[N], w[N], f[N][N];
int main(){
    cin >> n >> m;
    for(int i = 1; i <= n; i++) cin >> v[i] >> w[i];
    for(int i = 1; i <= n; i++){
        for(int j = 1; j <= m; j++){
            f[i][j] = f[i - 1][j];
            if (j >= v[i]){
                f[i][j] = max(f[i][j], f[i][j - v[i]] + w[i]);
            }
        }
        
    }
    cout << f[n][m] << endl;
    return 0;
}

(3)进一步优化

#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1010;
int n, m, v[N], w[N], f[N];
int main(){
    cin >> n >> m;
    for(int i = 1; i <= n; i++) cin >> v[i] >> w[i];
    for(int i = 1; i <= n; i++){
        for(int j = 1; j <= m; j++){
            
            if (j >= v[i]){
                f[j] = max(f[j], f[j - v[i]] + w[i]);
            }
        }
    }
    cout << f[m] << endl;
    return 0;
}

3. 多重背包问题

(1)朴素做法

#include <iostream>
#include <algorithm>
using namespace std;
const int N = 110;
int n, m, v[N], w[N], s[N], f[N][N];
int main(){
    cin >> n >> m;
    for(int i = 1; i <= n; i++){
        cin >> v[i] >> w[i] >> s[i];
    }
    for(int i = 1; i <= n; i++){
        for(int j = 0; j <= m; j ++){
            f[i][j] = f[i - 1][j];
            for(int k = 0; k * v[i] <= j && k <= s[i]; k++){
                f[i][j] = max(f[i][j], f[i - 1][j - k * v[i]] + k * w[i]);
            }
        }
    }
    cout << f[n][m] << endl;
    return 0;
}

(2)利用优化01背包的思想优化多重背包

#include <iostream>
#include <algorithm>
using namespace std;
const int N = 110;
int n, m, v[N], w[N], s[N], f[N];
int main(){
    cin >> n >> m;
    for(int i = 1; i <= n; i++){
        cin >> v[i] >> w[i] >> s[i];
    }
    for(int i = 1; i <= n; i++){
        for(int j = m; j >= v[i]; j --){
            for(int k = 0; k * v[i] <= j && k <= s[i]; k++){
                f[j] = max(f[j], f[j - k * v[i]] + k * w[i]);
            }
        }
    }
    cout << f[m] << endl;
    return 0;
}

(2)单调队列优化做法 

#include <iostream>
#include <algorithm>
using namespace std;
const int N = 11010;
int n, m, v[N], w[N], f[N];
int main(){
    int cnt = 0;
    cin >> n >> m;
    for(int i = 1; i <= n; i++){
        int a, b, s;
        cin >> a >> b >> s;
        int k = 1;
        while(k <= s){
            cnt ++;
            v[cnt] = a * k;
            w[cnt] = b * k;
            s -= k;
            k *= 2;
        }
        if (s){
            cnt ++;
            v[cnt] = s * a;
            w[cnt] = s * b;
        }
    }
    for(int i = 1; i <= cnt; i++){
        for(int j = m; j >= v[i]; j--){
            f[j] = max(f[j], f[j - v[i]] + w[i]);
        }
    }
    cout << f[m] << endl;
    return 0;
}

3. 分组背包问题

 没有朴素的做法,直接利用优化后的01背包的思想来做。

#include <iostream>
#include <algorithm>
using namespace std;
const int N = 110;
int n, m, v[N][N], w[N][N], s[N], f[N];
int main(){
    cin >> n >> m;
    for(int i = 1; i <= n; i++){
        cin >> s[i];
        for(int j = 1; j <= s[i]; j++){
            cin >> v[i][j] >> w[i][j];
        }
    }
    for(int i = 1; i <= n; i++){
        for(int j = m; j >= 0; j --){
            for(int k = 1; k <= s[i]; k++){
                if (j >= v[i][k]){
                    f[j] = max(f[j], f[j - v[i][k]] + w[i][k]);
                }
            }
        }
    }
    cout << f[m] << endl;
    
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

KevinHQK

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值