NP完全问题---3-SAT

1、什么是3SAT问题?
SAT是SATISFIABILITY(可满足性)的缩写。SAT问题就是问某一个布尔表达式是不是“可满足”的问题。这里的术语“可满足”的意思是存在一组“真值赋值”(truth assignment)使得布尔表达式为真。举例来说,“a & !b”(a与非b)就是一个"可满足"的布尔表达式,因为存在一组真值赋值(a=1,b=0)使其为真,而"(a | b) & (a | !b) & (!a | b) & (!a | !b)“就是一个"不可满足"的布尔表达式,因为找不到一个真值赋值使它为真。而3SAT问题就是问某个具有特殊形式的布尔表达式是否可满足的问题,这种特殊形式就是"3合取范式"或"3-CNF”。

1.1 合取范式
合取范式就是一种所有子句都由合取(即“与”)联接所构成的公式,如"a & (!b | c) & (a | !c | d)"。
这里的“子句”是指一个或多个"文字"的析取,而“文字”就是变量或变量的非。如上式中的“a”,“(!b | c)”和“(a | c | d)”就是“子句”,组成子句的a, !b, c, !c, d就是“文字” ,a, b, c, d就是“变量”。
“3合取范式”就是每个子句恰好由3个文字所组成的合取范式。

2 例子
举个例子:小红,小王,小江等n人想找个地方去做运动,他们觉得这个地方可能会有m种情况。为了尽量满足所有人的癖好,每个人都根据可能出现的情况提了一个包含3个需求的列表:小红想找个“有窗户”或者“有厕所”或者“没臭味”的地方,小王想找个“没窗户”或“有臭味”或“没厕所”的地方,小江想找个“有厕所”或“没臭味”或“没窗户”的地方。。。问,是否存在一个地方可以满足所有人的(至少一个)要求?

其中,每个人提的需求列表就是一个“子句”,比如小红提的 " ‘有窗户’或’有大床’或’没臭味’ " 就是一个“子句”。
需求列表中的每一项具体的需求都是一个“文字”,比如“有窗户”就是一个文字,“没臭味”也是一个文字。
需求的选项(可能出现的情况)就是“变量”,比如“窗户”就是一个变量,“厕所”是一个变量,“臭味”也是一个变量。
如果最后找到了一个“有窗户,没厕所,没臭味”的地方,那么“有窗户,没厕所,没臭味”就是变量的真值赋值。
所有人需求就是合取范式,如果“每个人的需求都有3项且至少要满足1项”就是“3合取范式”。

3SAT问题就是问 "是否存在"一个满足所有人需求的地方。

3、意义
为啥要研究这么个奇葩的问题?因为3SAT是一个非常著名的NP完全问题:除非“P=NP”,否则找不到一个多项式复杂度的算法求解这个问题。
有人就问了:“有名就了不起吗?有啥用啊?”
当然有用了,比方你老板要你解决某个问题X,要是你不能又快又准的解出来他就会发飙。如果你能证明这个问题X比3SAT问题还“难”,那么X就也不可能找到一个多项式复杂度的算法来求解。然后你就可以把这个证明甩到你老板脸上:我做不到,别人TMD也做不到!

来自:原创](https://tieba.baidu.com/p/6648139765)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值