本文目录
本文大部分是翻译,就算是翻译读下来也很吃力,建议粗读。我自己会更关注💡部分,可以细读一下。
3. PTQ训练后量化(离线量化)
训练后量化算法将预先训练好的FP32网络直接转换成定点网络,不需要原始训练pipeline。
离线量化可以是无数据的,或者可能需要一个现成的小校准集。几乎不需要超参数调优,可以直接用单独的API作为黑盒方法,以计算效率高的方式量化预训练的神经网络,让神经网络量化更广泛的应用。
PTQ过程中的一个基本步骤是为每个量化器找到良好的量化范围。 在2.2节中简要讨论了量化范围的选择如何影响量化误差。在本节有如下几个内容:
- 首先,讨论在实践中用于寻找好的量化参数的各种常用方法。
- 然后,探讨在PTQ期间观察到的常见问题,并介绍克服这些问题的最成功的技术。使用这些技术,提出了一个标准的训练后量化pipeline,发现它在大多数常见场景中工作得最好。
- 最后,引入了一组调试步骤,以提高量化模型的性能。
3.1 设置量化范围
在网络量化过程中,变量