数据结构和算法的关系

本文探讨了数据结构和算法的关系,强调数据结构是算法的基础。通过实例分析,如字符串替换、五子棋程序、约瑟夫丢手帕问题,展示了数据结构(如链表、稀疏数组)在解决问题中的作用。此外,还讨论了线性结构(如数组、链表)和非线性结构(如树、图)在解决实际问题(如修路问题、最短路径、汉诺塔、八皇后问题)中的应用。最后,介绍了稀疏数组的概念及其在五子棋程序存盘功能中的应用。
摘要由CSDN通过智能技术生成

数据结构和算法的关系

1)数据 data结构(structure)是一门研究组织数据方式的学科,有了编程语言也就有了数据结构学好数据结构可以
编写出更加漂亮,更加有效率的代码。
2)要学习好数据结构就要多多考虑如何将生活中遇到的问题,用程序去实现解决.
3)程序=数据结构 +算法
4)数据结构是算法的基础, 换言之,想要学好算法,需要把数据结构学到位。

实际问题

1、字符串替换问题

用单链表表示的字符串类及字符串结点类的定义,并依次实现它的构造函数、以及计算串长度、串赋值、判断两串相等、求子串、两串连接、求字串在串中的位置等7个成员函数

2、五子棋程序

判断游戏输赢,完成存盘退出和继续上局的功能
1)棋盘:二维数组=》(稀疏数组)+》写入文件【存档】
2)读取文件=》稀疏数组=》二维数组=》棋盘【接上局】

3、约瑟夫丢手帕问题

1)Josephu问题为:设编号为1, 2, … n的n个人围坐- -圈,约定编号为k (1<=k<=n) 的人从1开始报数,数到m的那个人出列,它的下一位又从1开始报数,数到m的那个人又出列,依次类推,直到所有人出列为止,由此产生一个出队编号的序列。
2)提示: 用一个不带头结点的循环链表来处理Josephu问题:先构成- -个有n个结点的单循环链表(单向环形链表),然后由k结点起从1开始计数,计到m时,对应结点从链表中删除,然后再从被删除结点的下一个结点又从1开始计数,直到最后一个结点从链表中删除算法结束。
3)小结: 完成约瑟夫问题, 需要使用到单向环形链表 这个数据结构

4、其他常见算法

1)修路问题=>最小生成树(加权值) [数据结构] +普利姆算法
2)最短路径问题=> 图+弗洛伊德算法
3)汉诺塔=>分支算法
4)八皇后问题=>回溯法

线性结构,非线性结构

线性结构

1)线性结构作为最常用的数据结构,其特点是数据元素之间存在一对一的线性关系
2)线性结构有两种不同的存储结构,即顺序存储结构(数组)链式存储结构(链表)。顺序存储的线性表称为顺序
表,顺序表中的存储元素是连续的
3)链式存储的线性表称为链表,链表中的存储元素不一定是连续的, 元素节点中存放数据元素以及相邻元素的地
址信息
4)线性结构常见的有: 数组、队列、链表和栈

非线性结构

非线性结构包括:二维数组,多维数组,广义表,树结构,图结构

稀疏数组和队列

稀疏sparearray数组

实际需求
编写五子棋程序中,有存盘退出和继续上局游戏的功能。
在这里插入图片描述
分析问题:
因为该二维数组的很多值是默认值0,因此记录了很多没有意义的数据.->稀疏数组。

稀疏矩阵基本介绍

当一个数组中大部分元素为0,或者为同一个值的数组时,可以使用稀疏数组来保存该数组。
稀疏数组的处理方法是:
1)记录数组-一共有几行几列,有多少个不同的值
2)把具有不同值的元素的行列及值记录在一个小规模的数组中,从而缩小程序的规模

在这里插入图片描述
应用实例
1)使用稀疏数组,来保留类似前面的二维数组(棋盘、地图等等)
2)把稀疏数组存盘, 并且可以从新恢复原来的二维数组数
3)整体思路分析
在这里插入图片描述

package com.atguigu.sparsearry;

public class SpareArray{
   
	
	public static void main(String[] args){
   
		//创建一个原始的二维数组 11*11
		//0:表示没有棋子,1 表示黑子 2表示白子
		int chessArr1[][] = new int [11][<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值