Generative Diffusion Prior for Unified Image Restoration and Enhancement (Paper reading)

GDP是一种新的无监督图像恢复和增强方法,它使用预训练的DDPM模型来建模图像后验分布。GDP解决了线性、非线性和盲图像恢复问题,优化退化模型参数,并能处理任意分辨率的图像。实验表明,GDP在多个任务上优于现有无监督方法,并具有良好的通用性。

Generative Diffusion Prior for Unified Image Restoration and Enhancement

Ben Fei, Fudan University, Shanghai AI Laboratory, CVPR2023, Cited:0, Code, Paper.

在这里插入图片描述

1. 前言

现有的图像恢复方法大多利用自然图像的后验分布。然而,它们通常假设已知的退化,并且还需要监督训练,这限制了它们对复杂的实际应用的适应。在这项工作中,我们提出了生成扩散先验(GDP),以无监督采样的方式对后验分布进行有效建模。GDP利用预训练去噪扩散生成模型(DDPM)来解决线性逆、非线性或盲问题。具体而言,GDP系统地探索了一种有条件指导的协议,该协议比常用的指导方式更实用。此外,GDP在去噪过程中有利于优化退化模型的参数,实现图像的盲恢复。此外,我们设计了分层指导和基于补丁的方法,使GDP能够生成任意分辨率的图像。在实验上,我们在几个图像数据集上展示了GDP对线性问题的多功能性,如超分辨率、去模糊、修复和着色,以及非线性和盲问题,如微光增强和HDR图像恢复。在重建质量和感知质量的不同基准上,GDP优于当前领先的无监督方法。此外,对于来自ImageNet训练集分布之外的各种任务的具有任意大小的自然图像或合成图像,GDP也很好地通用。我们的贡献有以下4点:(1)据我们所知,GDP是第一个统一的问题求解器,它以无监督的方式,可以有效的利用在ImageNet上预训练的无条件DDPM,输出不同的高保真度图像恢复和增强图片;(2) GDP能够优化随机启动的未知退化参数,从而形成一个强大的框架,可以解决任何盲图像恢复问题。(3) 此外,为了实现任意大小的图像生成,我们提出了分层指导和基于补丁的方法,极大地促进了GDP对自然图像的增强。(4) 此外,与传统的引导方式不同,GDP在每一步都直接预测给定噪声图像的临时输出,这将被用来指导下一步的图像生成。

2. 整体思想

整体的想法还是Guided diffusion那套,文章很漂亮,内容很多,创新点一般。

3. 方法

在这项研究中,我们的目标是利用训练有素的DDPM作为统一图像恢复和增强的有效先验,特别是处理各种退化图像。给定一张清晰图像 x x x,和降质模型 D D D,可以获得降质图像 y = D ( x ) y=D(x) y=D(x)。我们使用存储在 x x x先验中的的统计数据,并在 x x x的空间中搜索与 y y y最匹配的最优 x x x,将 y y y视为 x x x的损坏观测值。DDPM的反向去噪过程可以以退化图像 y y y为条件:
l o g p θ ( x t − 1 ∣ x t , y ) = l o g p θ ( x t − 1 ∣ x t ) p ( y ∣ x t ) log p_\theta(x_{t-1}|x_t, y) = log p_\theta(x_{t-1}|x_t)p(y|x_t) logpθ(xt1xt,y)=logpθ(xt1xt)p(yxt)
p ( y ∣ x t ) p(y|x_t) p(yxt)可以被视为 x t x_t x

Abstract: Time series forecasting is a challenging task due to the complex and dynamic nature of the data. In this paper, we propose a novel generative model for time series forecasting, which incorporates diffusion, denoise, and disentanglement techniques. Our model is based on the autoregressive moving average (ARMA) model, which is widely used in time series analysis. We introduce a diffusion process to model the noise in the data, which helps to improve the accuracy of the model. We also use a denoising autoencoder to remove the noise from the data, which helps to improve the quality of the generated samples. Finally, we use a disentanglement technique to separate the underlying factors of variation in the data, which helps to improve the interpretability of the model. We evaluate our model on two benchmark datasets, the Air Quality dataset and the Energy Consumption dataset. Our model outperforms existing state-of-the-art methods on both datasets, achieving lower prediction error and higher accuracy. We also show that our model is capable of generating realistic and plausible samples, which can be used for scenario analysis and decision making. Our work demonstrates the potential of incorporating diffusion, denoise, and disentanglement techniques in time series forecasting. These techniques can help to improve the accuracy, quality, and interpretability of the models. We believe that our model can be applied to a wide range of domains, such as finance, healthcare, and climate science, where time series forecasting is an important task. Keywords: time series forecasting, autoregressive moving average (ARMA) model, diffusion, denoise, disentanglement, generative model.
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值