Generative Diffusion Prior for Unified Image Restoration and Enhancement
Ben Fei, Fudan University, Shanghai AI Laboratory, CVPR2023, Cited:0, Code, Paper.

1. 前言
现有的图像恢复方法大多利用自然图像的后验分布。然而,它们通常假设已知的退化,并且还需要监督训练,这限制了它们对复杂的实际应用的适应。在这项工作中,我们提出了生成扩散先验(GDP),以无监督采样的方式对后验分布进行有效建模。GDP利用预训练去噪扩散生成模型(DDPM)来解决线性逆、非线性或盲问题。具体而言,GDP系统地探索了一种有条件指导的协议,该协议比常用的指导方式更实用。此外,GDP在去噪过程中有利于优化退化模型的参数,实现图像的盲恢复。此外,我们设计了分层指导和基于补丁的方法,使GDP能够生成任意分辨率的图像。在实验上,我们在几个图像数据集上展示了GDP对线性问题的多功能性,如超分辨率、去模糊、修复和着色,以及非线性和盲问题,如微光增强和HDR图像恢复。在重建质量和感知质量的不同基准上,GDP优于当前领先的无监督方法。此外,对于来自ImageNet训练集分布之外的各种任务的具有任意大小的自然图像或合成图像,GDP也很好地通用。我们的贡献有以下4点:(1)据我们所知,GDP是第一个统一的问题求解器,它以无监督的方式,可以有效的利用在ImageNet上预训练的无条件DDPM,输出不同的高保真度图像恢复和增强图片;(2) GDP能够优化随机启动的未知退化参数,从而形成一个强大的框架,可以解决任何盲图像恢复问题。(3) 此外,为了实现任意大小的图像生成,我们提出了分层指导和基于补丁的方法,极大地促进了GDP对自然图像的增强。(4) 此外,与传统的引导方式不同,GDP在每一步都直接预测给定噪声图像的临时输出,这将被用来指导下一步的图像生成。
2. 整体思想
整体的想法还是Guided diffusion那套,文章很漂亮,内容很多,创新点一般。
3. 方法
在这项研究中,我们的目标是利用训练有素的DDPM作为统一图像恢复和增强的有效先验,特别是处理各种退化图像。给定一张清晰图像 x x x,和降质模型 D D D,可以获得降质图像 y = D ( x ) y=D(x) y=D(x)。我们使用存储在 x x x先验中的的统计数据,并在 x x x的空间中搜索与 y y y最匹配的最优 x x x,将 y y y视为 x x x的损坏观测值。DDPM的反向去噪过程可以以退化图像 y y y为条件:
l o g p θ ( x t − 1 ∣ x t , y ) = l o g p θ ( x t − 1 ∣ x t ) p ( y ∣ x t ) log p_\theta(x_{t-1}|x_t, y) = log p_\theta(x_{t-1}|x_t)p(y|x_t) logpθ(xt−1∣xt,y)=logpθ(xt−1∣xt)p(y∣xt)
p ( y ∣ x t ) p(y|x_t) p(y∣xt)可以被视为 x t x_t x

GDP是一种新的无监督图像恢复和增强方法,它使用预训练的DDPM模型来建模图像后验分布。GDP解决了线性、非线性和盲图像恢复问题,优化退化模型参数,并能处理任意分辨率的图像。实验表明,GDP在多个任务上优于现有无监督方法,并具有良好的通用性。
最低0.47元/天 解锁文章
2473






