- 博客(178)
- 资源 (9)
- 收藏
- 关注
原创 Spatially-Adaptive Image Restoration using Distortion-Guided Networks论文阅读
论文旨在解决空间变化退化(Spatially-Varying Degradations) 的图像修复问题。传统方法通常针对单一退化类型(如雨痕或运动模糊)设计专用网络,且对所有像素采用相同的处理方式。然而,实际场景中退化分布不均匀(如雨滴仅遮挡局部区域),这种空间刚性处理(Spatially-Rigid Processing) 会导致两个问题:SPAIR的目标是:SPAIR的核心创新在于提出空间自适应修复框架(Spatially-Adaptive Restoration Framework),通过失真定位网
2025-06-13 00:30:00
515
1
原创 HINet: Half Instance Normalization Network for Image Restoration论文阅读
解决低层次视觉任务(如图像去噪、去模糊、去雨)中传统标准化方法(如Batch Normalization, BN)的局限性,提出一种高效且高性能的归一化模块——传统归一化(如BN)在低层次视觉任务中因小批量统计不稳定而失效,而。因其通道独立归一化特性(无需批量维度统计)更适用于此类任务。HIN Block创新性地仅对半数通道应用IN,避免全局归一化导致的内容丢失。“随着训练迭代增加,HIN带来的性能增益稳定存在,表明其提升模型上限而非仅加速收敛。,以提升图像恢复任务的性能。HIN有效性验证(论文图4)
2025-06-13 00:15:00
399
1
原创 Pre-Trained Image Processing Transformer论文阅读
证明预训练模型对未见任务的强适应性。:在解码器中注入任务嵌入。图6:数据规模对性能的影响。
2025-06-12 00:30:00
715
原创 Explore Image Deblurring via Encoded Blur Kernel Space论文阅读
公式表达式作用(3)kGxykGxyyFxkyFxk定义模糊操作族与提取器(4)∑ρyiFxiGxiyi∑ρyiFxiGxiyi)))训练损失函数(7)LρyFxkλ∣k∣2γ∇xαLρyFxk))λ∣k∣2γ∇xα去模糊优化目标。
2025-06-12 00:15:00
905
1
原创 DeFMO: Deblurring and Shape Recovery of Fast Moving Objects论文阅读
(Temporal Super-Resolution)序列,即生成一系列清晰子帧(sub-frames),模拟高速相机的拍摄效果。(Fast Moving Objects, FMOs)在图像中的模糊问题。具体目标是从单张模糊图像中恢复物体的。
2025-06-11 10:17:16
342
1
原创 Multi-Stage Progressive Image Restoration论文阅读
特性传统方法局限MPRNet创新量化增益架构设计单阶段难以兼顾全局与局部三阶段互补(U-Net + ORSNet)PSNR↑1.98 dB(去雨)注意力机制无监督或自注意力SAM引入GT监督动态校准特征PSNR↑0.42 dB(消融)特征融合阶段间信息孤立CSFF传递多尺度上下文PSNR↑0.18 dB(消融)计算效率(表7)参数量大(如DeblurGAN-v2: 60.9M)三阶段总参数量20.1M,推理速度0.18s/帧速度↑2.4× vs MSPFN。
2025-06-11 10:16:34
664
1
原创 Exposure Trajectory Recovery From Motion Blur论文阅读
物理驱动建模:将模糊归因于像素级时空位移(曝光轨迹),突破传统卷积核的局限性。无监督训练:通过可微分模糊生成模块实现循环重建,无需运动真值监督。轨迹约束:二次约束首次在单帧中建模非线性运动(公式14),解决病态问题。高效部署:运动偏移仅需N×2N \times 2N×2参数(N15N=15N15),模型轻量且实时(0.011s/帧)。
2025-06-10 00:30:00
933
1
原创 Physics-Based Generative Adversarial Models for Image Restoration and Beyond论文阅读
首个物理约束双判别器GAN:将退化模型HH作为可微模块嵌入框架,实现“生成-重建”闭环优化通用损失设计LpLgLaLpLgLa联合优化,平衡视觉质量与物理一致性端到端多任务适配:仅需调整HH形式即可应用于去模糊、去雾、去雨、超分等任务公式复用价值yiHGyiyiHGyi))(物理重建)Lp∥yi−yi∥1Lp∥yi−yi∥1(逆向匹配损失)
2025-06-10 00:15:00
987
1
原创 Scale-Iterative Upscaling Network for Image Deblurring论文阅读
公式编号公式内容作用(1)F0UNet1F−1F0UNet1F−1U-Net₁特征重建(2)Li1↑HRDNBi1Li1Li1↑HRDNBi1Li1RDN模块细节恢复(3)LiUNet2BiLi1↑LiUNet2BiLi1↑U-Net₂图像重建(4)LiUNBi1Li1BiLiUNBi1。
2025-06-09 00:30:00
1090
1
原创 Dark and Bright Channel Prior Embedded Network for Dynamic Scene Deblurring论文阅读
暗通道(Dark Channel Prior, DCP)DIxminy∈Ωxminc∈rgbIcy2DIxy∈Ωxminc∈rgbminIcy2亮通道(Bright Channel Prior, BCP)BIxmaxy∈Ωxmaxc∈rgbIcy2BIxy∈Ωxmaxc∈rgbmaxIcy2关键观察。
2025-06-09 00:15:00
807
1
原创 Deblurring by Realistic Blurring论文阅读
以智能手机摄影为例,2023年全球智能手机出货量达12亿台,其中约75%的用户在弱光或运动场景下会遇到模糊照片问题。传统ISP(图像信号处理器)解决方案受限于硬件算力,往往采用简化的去模糊算法,导致处理效果有限。传统方法通常假设模糊过程由单一的线性积分操作(如模糊核卷积)主导,但现实世界的模糊成因远比这复杂。这种多因素交互导致模糊图像的形成过程具有高度非线性特征,使得基于简单数学模型的传统方法难以准确建模。这种设计使单张清晰图像可生成多样化模糊效果,解决了传统方法中数据多样性不足的问题。
2025-06-08 00:30:00
648
1
原创 Unsupervised Domain-Specific Deblurring via Disentangled Representations论文阅读
KL散度损失公式:实现特征解缠的核心约束。对抗损失公式:确保生成图像逼真性的对抗优化目标。循环一致性损失公式:保留内容结构的循环约束。感知损失公式:优化高频细节的感知相似性。模型参数内容编码器:3层步长卷积 + 4个残差块模糊编码器:4层步长卷积 + 全连接层生成器:对称结构(4残差块 + 3转置卷积)优化器:Adam(初始学习率0.0002,指数衰减)解缠表示框架:首次将内容与模糊特征分离应用于无监督去模糊,突破传统GAN的耦合编码局限。无监督适配性。
2025-06-08 00:15:00
1252
1
原创 Deep Stacked Hierarchical Multi-Patch Network for Image Deblurring论文阅读
底层特征提取:公式(1)特征拼接与解码:公式(2)-(5)层级间残差修正:公式(3)、(6)顶层输出:公式(9)堆叠模型损失函数:公式(11)
2025-06-07 00:30:00
808
1
原创 Gyroscope-Aided Motion Deblurring with Deep Networks论文阅读
论文旨在结合,解决单图像去模糊任务中存在的两大挑战::论文提出框架,首次将(Gyroscope)数据与CNN结合,通过以下创新点解决传统方法的局限性:(公式1):dtdqt21qt⊙ωtqt11ωt)qt)Rt)(公式2):HtKRt−dttn⊤K−1HtKRtK−1(uv)(公式5):x′KRt2R⊤t1K−1xtd∼N00.01ms)k∼N。
2025-06-07 00:15:00
1818
1
原创 Gated Fusion Network for Joint Image Deblurring and Super-Resolution论文阅读
GFN由四个模块构成:去模糊模块(Deblurring Module)、SR特征提取模块(SR Feature Extraction Module)、门控模块(Gate Module)和重建模块(Reconstruction Module),如图2所示。,即同时完成去模糊(Deblurring)和超分辨率(Super-Resolution, SR)。,通过双分支架构解耦去模糊(Deblurring)与超分辨率(Super-Resolution, SR)任务,并引入动态门控机制实现特征级融合。
2025-06-06 00:30:00
850
1
原创 DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks论文阅读
对比维度传统方法(如Fergus)深度学习方法(Nah)DeblurGAN模糊核依赖需显式估计隐式学习隐式学习计算复杂度高(迭代优化)中(多阶段训练)低(端到端单次前向)网络参数量33.7M5.8M关键创新基于统计先验多尺度CNNWGAN-GP + 感知损失0.9160.958推理时间(s)4.330.85。
2025-06-06 00:15:00
967
1
原创 Scale-Recurrent Network for Deep Image Deblurring论文阅读
维度SRN-DeblurNet (本文)参数量8.19M2.99M(减少63%)29.08 dB30.26 dB(提升1.18 dB)SSIM0.91350.9342训练时间≈3.09秒/图像1.87秒/图像关键创新独立多尺度网络权重共享 + ConvLSTM可视化对比传统方法(图1b-c)在文字边缘产生伪影,SRN(图1d)恢复细节更清晰,无过度平滑。跨尺度权重共享:首次将循环结构引入多尺度去模糊,参数效率提升3倍。ConvLSTM增强全局一致性。
2025-06-05 00:30:00
933
2
原创 Learning a Discriminative Prior for Blind Image Deblurring论文阅读
公式编号公式内容作用(3)二元交叉熵损失训练分类器(4)MAP目标函数联合优化图像与模糊核(9)图像子问题闭式解快速更新III(12)辅助变量uuu的梯度下降优化CNN先验项(13)核估计子问题更新模糊核kkk。
2025-06-05 00:15:00
870
2
原创 Deep Semantic Face Deblurring论文阅读
语义驱动的输入设计:将语义标签作为先验,显式引导网络恢复人脸结构;局部结构损失:针对关键部件设计区域化约束,解决细节稀疏性问题;混合损失函数:结合像素、感知、对抗损失,平衡定量指标与视觉质量;增量训练策略:分阶段学习模糊核多样性,提升模型鲁棒性。
2025-06-04 07:48:53
1023
1
原创 Graph-Based Blind Image Deblurring From a Single Photograph论文阅读
∥x∥RGTV∑i1N∑j1Nwijxixj∣xj−xi∣(7)∥x∥RGTVi1∑Nj1∑Nwijxixj∣xj−xi∣7其中,动态边权函数wijxixjexp−∣xi−xj∣2σ2wijxixjexp−σ2∣xi−xj∣2是像素强度差的指数函数。∥。
2025-06-04 07:48:02
830
1
原创 Enhanced Sparse Model for Blind Deblurring论文阅读
论文提出了一种新的正则项lel_ele,由l0l_0l0和l1l_1l1∥⋅∥e∥⋅∥0∥⋅∥13∥⋅∥e∥⋅∥0∥⋅∥13其核心思想是通过联合优化,进一步增强信号的稀疏性。解释l0l_0l0范数(Lo Norm):统计非零元素数量,能够严格约束稀疏性,但因其非凸性导致优化困难。l1l_1l1范数(L1 Norm):作为l0l_0l0。
2025-06-02 00:30:00
1506
1
原创 Dynamic Scene Deblurring Using Spatially Variant Recurrent Neural Networks论文阅读
SV-RNN架构:空间变化权重生成与RNN迭代的联合设计。IIR模型与RNN等价性:理论分析指导网络结构选择。
2025-06-02 00:15:00
1029
1
原创 Deblurring Text Images via L0-Regularized Intensity and Gradient Prior论文阅读
(Bimodal Intensity Distribution)(图2b),其梯度特性与自然场景差异显著(图2c)。本文方法通过定制化先验模型,显著提升文本恢复的清晰度与鲁棒性,为OCR(Optical Character Recognition, 光学字符识别)、智能文档处理等领域提供更可靠的技术支持。(L0-Regularized Intensity and Gradient Prior)的优化框架,克服传统自然图像先验(如梯度稀疏性)对二值化文本的失效问题。为权重系数,用于平衡强度与梯度先验的贡献。
2025-06-01 00:30:00
611
1
原创 Deblurring Shaken and Partially Saturated Images论文阅读
在实际应用中,手持摄影(尤其是低光照环境)常因曝光时间过长导致相机抖动模糊和光源过曝(如夜间灯光形成的高亮条纹)。(partially saturated pixels)联合作用下的图像去模糊问题。传统去模糊方法(如Richardson-Lucy算法)假设图像形成过程是线性的,但饱和像素会破坏这一假设,导致去模糊结果中出现。本论文在饱和图像去模糊领域提出了创新性的分治策略和非线性建模方法,为实际应用提供了重要参考。论文的核心目标是通过建模饱和像素的非线性影响,设计一种新的非盲去模糊算法,显著减少振铃效应。
2025-06-01 00:15:00
868
1
原创 Deblurring Natural Image Using Super-Gaussian Fields论文阅读
SGF的核心在于将势函数ϕ\phiϕ定义为超高斯分布(Super-Gaussian Distribution)ϕJjxcmaxγjc≥0NJjxc;0γjc4超高斯分布的特征是比高斯分布更尖峰(高峭度)和重尾,适合建模稀疏信号;γjcγjc是局部方差参数,通过最大化操作自适应调整,无需预训练。
2025-05-31 00:30:00
983
1
原创 Blind Image Deblurring with Outlier Handling论文阅读
论文提出的鲁棒函数RzRzRzz22−logaebz22b2Rz2z2−2blogaebz22其中aaa和bbb是正标量参数(实验设置为a4592πa459/2π和b26012b=2601/2b2601/2小残差近似ℓ2\ell_2ℓ2范数:通过泰勒展开可得,当z→0z \to 0z→0时,Rz∝z2Rz∝z2,与常规最小二乘兼容;
2025-05-31 00:15:00
1867
1
原创 A Simple Local Minimal Intensity Prior and an Improved Algorithm for Blind Image Deblurring论文阅读
图像分为非重叠块(块大小r×rr \times rr×rPIiminxy∈Ωiminc∈rgbIxycPIixy∈Ωiminc∈rgbminIxycΩi\Omega_iΩi为第iii块的像素索引集,PI∈RPPI∈RPP⌈mr⌉⋅⌈nr⌉P⌈rm⌉⋅⌈rn⌉PB≥PIPB≥PI。
2025-05-30 00:30:00
958
1
原创 Learning Discriminative Data Fitting Functions for Blind Image Deblurring论文阅读
来提升模糊核估计和潜在图像恢复的精度。传统方法主要依赖人工设计的图像先验(如梯度稀疏性、暗通道先验等),但忽视了数据拟合函数的重要性。本文提出,通过数据驱动的方式从大规模数据中学习不同数据拟合项的权重,从而更有效地约束模糊核和图像的优化过程。同时,该方法的通用性(可扩展至非均匀模糊和特定领域任务)为商业化算法开发提供了新思路。传统方法(如[16,35])通常固定数据拟合项(如强度用于图像恢复、梯度用于核估计),而本文通过引入。该公式表明,学习到的权重直接影响了核估计的最小二乘解。分别为图像和核的先验项。
2025-05-30 00:15:00
830
1
原创 Learning to Super-Resolve Blurry Face and Text Images论文阅读
传统方法通常假设超分辨率(Super-Resolution, SR)需要清晰的低分辨率输入,去模糊(Deblurring)需要高分辨率输入,但在实际场景(如监控视频或运动图像)中,输入图像可能同时存在低分辨率和复杂运动模糊,这使得现有方法失效。生成器根据输入图像的类别标签动态适配不同判别器的特征约束。论文旨在解决从低分辨率且模糊的输入图像中直接恢复出清晰的高分辨率图像的问题,特别是针对。层的特征映射,约束生成图像与真实图像在中间层的特征相似性。通过引入真实图像对之间的相对距离约束,避免判别器的平凡解。
2025-05-29 00:30:00
750
1
原创 From Motion Blur to Motion Flow: A Deep Learning Solution for Removing Heterogeneous Motion Blur论文阅读
(Heterogeneous Motion Blur)的去除问题。传统方法通常假设模糊是空间均匀的(如全局相机抖动),而真实场景中模糊模式可能随像素位置变化(如物体运动与相机运动的叠加)。作者提出通过深度学习直接估计。——即每个像素的运动矢量,从而构建端到端的去模糊框架。为狄拉克函数,表示线性运动轨迹。为像素级异构模糊核,
2025-05-29 00:15:00
904
1
原创 Deep Multi-scale Convolutional Neural Network for Dynamic Scene Deblurring论文阅读
传统方法假设模糊核(Blur Kernel)具有局部均匀性或线性特征,但在实际动态场景中,模糊由相机抖动、物体运动、场景深度变化等多种因素共同作用,导致模糊核复杂且难以参数化。恢复清晰图像能够提升后续任务(如目标检测、语义分割)的准确性,具有显著的产业价值。结构,输入和输出均为多尺度图像(如256x256, 128x128, 64x64),模仿传统优化方法的“由粗到精”(Coarse-to-Fine)策略。(ResBlock)构建深层网络(共120层),去除残差连接后的ReLU以加速收敛(图3)。
2025-05-28 00:30:00
1024
1
原创 Convolutional Neural Networks for Direct Text Deblurring论文阅读
xFyθ3xFyθ3其中,yyy为模糊图像,θ\thetaθ为网络参数,x\hat{x}x为恢复的清晰图像。该函数隐式包含数据项与正则项,跳过了传统优化框架中的显式正则化设计。
2025-05-28 00:15:00
1340
1
原创 DeblurGAN-v2: Deblurring (Orders-of-Magnitude) Faster and Better论文阅读
创新点技术细节效果FPN多尺度特征融合跨层连接重建高分辨率特征,替代多尺度输入处理计算量减少78%(411G FLOPs vs SRN 1434G),PSNR提升0.56 dB灵活骨干网络Inception-ResNet-v2(高性能) vs MobileNet-DSC(轻量)MobileNet-DSC模型仅4 MB,支持25 FPS实时处理双尺度RaGAN-LS判别器全局+局部判别器,RaGAN-LS损失加速训练SSIM提升0.007(表5),生成图像边缘更清晰(图5对比)
2025-05-27 07:43:34
1063
1
原创 Joint Face Hallucination and Deblurring via Structure Generation and Detail Enhancement论文阅读
论文提出两阶段联合框架,将人脸超分辨率()与去模糊(面部结构生成网络(Facial Structure Generation Network, FSGN):通过深度学习生成基础图像(Base Image),恢复全局人脸结构。基于示例的细节增强(Exemplar-based Detail Enhancement):利用高分辨率(HR)示例库,通过匹配与回归补充局部细节。
2025-05-27 07:36:49
716
1
原创 Neural Blind Deconvolution Using Deep Priors论文阅读
泛化性:无需训练数据,适应性强。简化优化:通过网络设计消除约束,联合优化提高收敛性。高质量输出:同时生成准确模糊核和清晰图像,减少后续处理需求。鲁棒性:TV正则化增强对噪声的处理能力。
2025-05-26 22:01:20
872
1
原创 Structure-Revealing Low-Light Image Enhancement Via Robust Retinex Model论文阅读
维度传统方法本文方法噪声处理后处理去噪(BM3D)联合建模(式6)梯度约束ℓ1\ell_1ℓ1稀疏性(反射率)引导式梯度增强(式4-5)收敛效率对数变换导致非凸性免对数ADMM(10-15次迭代收敛)适用场景低噪声图像低/高噪声图像(双模型切换)关键实验结果支持在合成噪声数据集(BSDS)上,模型6的PSNR达到18.53 dB,高于传统方法+BM3D组合(表I)基线模型(式3)的NFERM指标为10.70(最低),表明细节保留最佳(图8)
2025-05-26 21:49:30
1276
1
原创 Learning a Convolutional Neural Network for Non-uniform Motion Blur Removal论文阅读
非均匀运动模糊通常由相机或物体在曝光期间的复杂运动引起,例如快速移动的物体或手持相机的抖动。传统方法假设全局运动模型(如相机旋转或平移),但无法有效处理局部强非均匀模糊(如多物体不同方向运动)。通过旋转图像(-24°, -18°, -12°, -6°),将候选方向分辨率从30°提升至6°,候选核数量从73扩展至361。例如,自动驾驶系统需要清晰的图像来检测障碍物,而模糊会直接影响算法的可靠性。的彩色图像块,输出为73种候选核的Softmax概率分布。例如,旋转图像块后,CNN预测的原始方向。
2025-05-25 00:30:00
968
1
原创 Unnatural L0 Sparse Representation for Natural Image Deblurring论文阅读
论文提出分段函数ϕ⋅ϕ⋅ϕ∂∗zi1ϵ2∣∂∗zi∣2if∣∂∗zi∣≤ϵ1otherwise\right.ϕ∂∗ziϵ21∣∂∗zi∣21if∣∂∗zi∣≤ϵotherwise其中,∂∗zi∂∗zi表示像素iii在水平(hhh)或垂直(vvv)方向的梯度,ϵ\epsilonϵ为阈值参数。该函数在梯度小于ϵ。
2025-05-25 00:15:00
689
1
原创 Total Variation Blind Deconvolution论文阅读
论文旨在解决盲去卷积(Blind Deconvolution)问题,即在未知模糊核(Point Spread Function, PSF)的情况下,同时恢复清晰图像和模糊核。核心挑战在于病态性(Ill-posedness)问题,即多组解可能满足同一观测数据。作者提出一种基于总变差(Total Variation, TV)正则化的联合优化方法,结合交替最小化(Alternating Minimization, AM)算法,以提升恢复结果的边缘保持能力和鲁棒性。实际问题:在摄影、医学成像、卫星遥感等领域,图像常
2025-05-24 00:30:00
768
1
原创 Robust Kernel Estimation with Outliers Handling for Image Deblurring论文阅读
(Outliers)(如饱和像素、非高斯噪声等)导致的模糊核(Blur Kernel)估计不准确的问题。传统方法基于线性卷积模型(公式1),但实际图像中因传感器动态范围限制或噪声干扰,线性模型失效。:在真实场景中,模糊图像常包含饱和区域(如强光源)、非高斯噪声(如脉冲噪声),这些异常值破坏线性模型假设,导致现有盲去模糊方法(如[3, 17, 36])倾向于估计。策略,解决传统盲去模糊方法在异常值(如饱和像素、非高斯噪声)干扰下核估计退化为。,通过选择可靠边缘并去除异常值,提升模糊核估计的准确性。
2025-05-24 00:15:00
1038
1
excel表格数据分组matlab程序
2025-05-26
Meta Networks for Neural Style Transfer 杨老师版
2025-02-18
Perceptual Losses for Real-Time Style Transfer and Super-Resolution 杨老师版
2025-02-18
lens-distortion-triangulation镜头畸变矫正
2018-07-31
Vessel diameter血管直径检测.rar
2020-05-05
guidedfilter-rain rm.rar
2020-05-05
神经网络与机器学习Neural Networks and Learning Machines((加)SimonHaykin) 高清英文原版
2019-04-04
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人