线索化二叉树
先看一个问题
将数列 {1,3,6,8,10,14 } 构建成一颗二叉树. n+1=7
- 当我们对上面的二叉树进行中序遍历时,数列为 {8,3,10,1,14,6}
- 但是 6,8,10,14 这几个节点的 左右指针,并没有完全的利用上.
- 如果我们希望充分的利用 各个节点的左右指针, 让各个节点可以指向自己的前后节点,怎么办?
- 解决方案-线索二叉树
一、线索二叉树基本介绍
- n 个结点的二叉链表中含有 n+1 【公式 2n-(n-1)=n+1】 个空指针域。利用二叉链表中的空指针域,存放指向 该结点在某种遍历次序下的前驱和后继结点的指针(这种附加的指针称为"线索")
- 这种加上了线索的二叉链表称为线索链表,相应的二叉树称为线索二叉树(ThreadedBinaryTree)。根据线索性质
的不同,线索二叉树可分为前序线索二叉树、中序线索二叉树和后序线索二叉树三种 - 一个结点的前一个结点,称为前驱结点
- 一个结点的后一个结点,称为后继结点
二、 线索二叉树应用案例
将下面的二叉树,进行中序线索二叉树。中序遍历的数列为 {8,3,10,1,14,6}
说明: 当线索化二叉树后,Node 节点的 属性 left 和 right ,有如下情况:
- left 指向的是左子树,也可能是指向的前驱节点. 比如 ① 节点 left 指向的左子树, 而 ⑩ 节点的 left 指向的 就是前驱节点.
- right 指向的是右子树,也可能是指向后继节点,比如 ① 节点 right 指向的是右子树,而⑩ 节点的 right 指向 的是后继节点.
具体代码:
/**
* 线索化二叉树
*/
public class ThreadedBinaryTreeDemo {
public static void main(String[] args) {
//测试线索二叉树
Node root = new Node(1, "tom");
Node node2 = new Node(3, "jack");
Node node3 = new Node(6, "smith");
Node node4 = new Node(8, "mary");
Node node5 = new Node(10, "King");
Node node6 = new Node(14, "dim");
root.setLeft(node2);
root.setRight(node3);
node2.setLeft(node4);
node2.setRight(node5);
node3.setLeft(node6);
//测试中序线索化
ThreadedBinaryTree threadedBinaryTree = new ThreadedBinaryTree();
threadedBinaryTree.setRoot(root);
threadedBinaryTree.threadedNodes();
//测试 10号
Node leftnode = node5.getLeft();
Node rightNode = node5.getRight();
System.out.println("10 号结点的前驱结点是 =" +leftnode);
System.out.println("10 号结点的后继结点是=" +rightNode);
//当线索化二叉树后,能在使用原来的遍历方法
// threadedBinaryTree.infixOrder();
System.out.println("使用线索化的方式遍历 线索化二叉树");
threadedBinaryTree.threadedList();
}
}
//定义 ThreadedBinaryTree 实现了线索化功能的二叉树
class ThreadedBinaryTree{
private Node root;
//为了实现线索化,需要创建要给指向当前结点的前驱结点的指针
// 在递归进行线索化时,pre 总是保留前一个结点
private Node pre=null;
public void setRoot(Node root){
this.root=root;
}
//重载一把 threadedNodes 方法
public void threadedNodes(){
this.threadedNodes(root);
}
//遍历线索化二叉树的方法
public void threadedList(){
//定义一个变量,存储当前遍历的结点,从 root 开始
Node node=root;
while (node!=null){
//循环的找到 leftType==1 的结点,第一个找到就是 8 结点
//后面随着遍历而变化,因为当 leftType==1 时,说明该结点是按照线索化
//处理后的有效结点
while (node.getLeftType()==0){
node=node.getLeft();
}
//打印当前这个结点
System.out.println(node);
//如果当前结点的右指针指向的是后继结点,就一直输出
while (node.getRightType()==1){
//获取到当前结点的后继结点
node=node.getRight();
System.out.println(node);
}
//替换这个遍历的结点
node=node.getRight();
}
}
//编写对二叉树进行中序线索化的方法
/**
*
* @param node 当前需要线索化的节点
*/
public void threadedNodes(Node node){
//如果 node==null, 不能线索化
if (node==null){
return;
}
//(一)先线索化左子树
threadedNodes(node.getLeft());
//(二)线索化当前结点
//以 8 结点来理解
//8 结点的.left =null,8 结点的.leftType=1
if (node.getLeft()==null){
//让当前结点的左指针指向前驱结点
node.setLeft(pre);
//修改当前结点的左指针的类型,指向前驱结点
node.setLeftType(1);
}
//处理后继节点
if (pre!=null&&pre.getRight()==null){
//让前驱结点的右指针指向当前结点
pre.setRight(node);
//修改前驱结点的右指针类型
pre.setRightType(1);
}
//!!! 每处理一个结点后,让当前结点是下一个结点的前驱结点
pre=node;
//(三)在线索化右子树
threadedNodes(node.getRight());
}
//删除节点
public void delNode(int no){
if (root!=null){
//如果只有一个 root 结点, 这里立即判断 root 是不是就是要删除结点
if (root.getNo()==no){
root=null;
}else {
//递归删除
root.delNode(no);
}
}else {
System.out.println("空树,不能删除");
}
}
/**
* 前序遍历
*/
public void preOrder(){
if (this.root!=null){
this.root.preOrder();
}else{
System.out.println("空树,无法遍历");
}
}
/**
* 中序遍历
*/
public void infixOrder(){
if (this.root!=null){
this.root.infixOrder();
}else {
System.out.println("空树,无法遍历");
}
}
/**
* 后序遍历
*/
public void postOrder(){
if(this.root!=null){
this.root.postOrder();
}else{
System.out.println("空树,无法遍历");
}
}
/**
*前序查找
* @param no
* @return
*/
public Node preOrderSearch(int no){
if (root!=null){
return root.preOrderSearch(no);
}else {
return null;
}
}
/**
* 中序遍历
* @param no
* @return
*/
public Node infixOrderSearch(int no){
if(root!=null){
return root.preOrderSearch(no);
}else {
return null;
}
}
public Node postOrderSearch(int no){
if (root!=null){
return this.root.postOrderSearch(no);
}else{
return null;
}
}
}
class Node{
private int no;
private String name;
private Node left;
private Node right;
//1. 如果 leftType==0 表示指向的是左子树, 如果 1 则表示指向前驱结点
//2. 如果 rightType ==0 表示指向是右子树, 如果 1 表示指向后继结点
private int leftType;
private int rightType;
public Node(int no, String name) {
this.no = no;
this.name = name;
}
@Override
public String toString() {
return"HeroNode[no="+no+",name="+name+"]";
}
public int getNo() {
return no;
}
public void setNo(int no) {
this.no = no;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public Node getLeft() {
return left;
}
public void setLeft(Node left) {
this.left = left;
}
public Node getRight() {
return right;
}
public void setRight(Node right) {
this.right = right;
}
public int getLeftType() {
return leftType;
}
public void setLeftType(int leftType) {
this.leftType = leftType;
}
public int getRightType() {
return rightType;
}
public void setRightType(int rightType) {
this.rightType = rightType;
}
//递归删除结点
//1.如果删除的节点是叶子节点,则删除该节点
//2.如果删除的节点是非叶子节点,则删除该子树
public void delNode(int no){
//思路
// 1. 因为我们的二叉树是单向的,所以我们是判断当前结点的子结点是否需要删除结点,而不能去判断 当前这个结点是不是需要删除结点.
// 2. 如果当前结点的左子结点不为空,并且左子结点 就是要删除结点,就将 this.left=null; 并且就返回 (结束递归删除)
// 3. 如果当前结点的右子结点不为空,并且右子结点 就是要删除结点,就将 this.right=null;并且就返回 (结束递归删除)
// 4. 如果第 2 和第 3 步没有删除结点,那么我们就需要向左子树进行递归删除
// 5. 如果第 4 步也没有删除结点,则应当向右子树进行递归删除.
//2. 如果当前结点的左子结点不为空,并且左子结点 就是要删除结点,就将 this.left=null; 并且就返回(结 束递归删除)
if (this.left!=null&&this.left.no==no){
this.left=null;
return;
}
//3.如果当前结点的右子结点不为空,并且右子结点 就是要删除结点,就将 this.right=null ;并且就返回(结 束递归删除)
if (this.right!=null&&this.right.no==no){
this.right=null;
return;
}
//4.我们就需要向左子树进行递归删除
if(this.left!=null){
this.left.delNode(no);
}
//5.则应当向右子树进行递归删除
if (this.right!=null){
this.right.delNode(no);
}
}
//编写前序遍历的方法
public void preOrder(){
//先输出父结点
System.out.println(this);
//递归向左子树前序遍历
if (this.left!=null){
this.left.preOrder();
}
//递归向右子树前序遍历
if (this.right!=null){
this.right.preOrder();
}
}
//中序遍历
public void infixOrder(){
//递归向左子树中序遍历
if(this.left!=null){
this.left.infixOrder();
}
//输出父结点
System.out.println(this);
//递归向右子树中序遍历
if (this.right!=null){
this.right.infixOrder();
}
}
//后序遍历
public void postOrder(){
if (this.left!=null){
this.left.postOrder();
}
if (this.right!=null){
this.right.postOrder();
}
System.out.println(this);
}
//前序遍历查找
/**
*
* @param no 查找 no
* @return 如果找到就返回该 Node,如果没有找到返回 null
*/
public Node preOrderSearch(int no){
System.out.println("进入前序遍历");
//比较当前结点是不是
if(this.no==no){
return this;
}
//1.则判断当前结点的左子节点是否为空,如果不为空,则递归前序查找
//2.如果左递归前序查找,找到结点,则返回
Node resNode=null;
if (this.left!=null){
resNode=this.left.preOrderSearch(no);
}
if (resNode!=null){
//说明左子树找到
return resNode;
}
//1.左递归前序查找,找到结点,则返回,否继续判断
//2.当前的结点的右子节点是否为空,如果不空,则继续向右递归前序查找
if (this.right!=null){
resNode=this.right.preOrderSearch(no);
}
return resNode;
}
//中序遍历查找
public Node infixOrderSearch(int no){
//判断当前结点的左子节点是否为空,如果不为空,则递归中序查找
Node resNode=null;
if (this.left!=null){
resNode=this.left.infixOrderSearch(no);
}
if (resNode!=null){
return resNode;
}
System.out.println("中序查找");
//如果找到,则返回,如果没有找到,就和当前结点比较,如果是则返回当前结点
if (this.no==no){
return this;
}
//否则继续进行右递归的中序查找
if (this.right!=null){
resNode=this.right.infixOrderSearch(no);
}
return resNode;
}
//后序遍历查找
public Node postOrderSearch(int no){
//判断当前结点的左子节点是否为空,如果不为空,则递归后序查找
Node resNode =null;
if (this.left!=null){
resNode=this.left.postOrderSearch(no);
}
if (resNode!=null){
return resNode;
}
//如果左子树没有找到,则向右子树递归进行后序遍历查找
if (this.right!=null){
resNode=this.right.postOrderSearch(no);
}
if (resNode!=null){
return resNode;
}
System.out.println("后序查找");
//如果左右子树都没有找到,就比较当前结点是不是
if (this.no==no){
return this;
}
return resNode;
}
}
三、遍历线索化二叉树
- 说明:对前面的中序线索化的二叉树, 进行遍历
- 分析:因为线索化后,各个结点指向有变化,因此原来的遍历方式不能使用,这时需要使用新的方式遍历
线索化二叉树,各个节点可以通过线型方式遍历,因此无需使用递归方式,这样也提高了遍历的效率。 遍历的次
序应当和中序遍历保持一致。
//遍历线索化二叉树的方法
public void threadedList(){
//定义一个变量,存储当前遍历的结点,从 root 开始
Node node=root;
while (node!=null){
//循环的找到 leftType==1 的结点,第一个找到就是 8 结点
//后面随着遍历而变化,因为当 leftType==1 时,说明该结点是按照线索化
//处理后的有效结点
while (node.getLeftType()==0){
node=node.getLeft();
}
//打印当前这个结点
System.out.println(node);
//如果当前结点的右指针指向的是后继结点,就一直输出
while (node.getRightType()==1){
//获取到当前结点的后继结点
node=node.getRight();
System.out.println(node);
}
//替换这个遍历的结点
node=node.getRight();
}
}