线索化二叉树

本文介绍了线索二叉树的概念,它通过在二叉链表的空指针域中添加线索,使得节点能指向其前驱和后继节点,从而更有效地进行遍历。在中序线索二叉树的例子中,展示了如何构建和遍历线索化后的二叉树,以及如何利用线索化提升遍历效率。此外,代码实现展示了如何进行中序线索化以及遍历线索化二叉树的过程。
摘要由CSDN通过智能技术生成

线索化二叉树

先看一个问题
将数列 {1,3,6,8,10,14 } 构建成一颗二叉树. n+1=7
在这里插入图片描述

  1. 当我们对上面的二叉树进行中序遍历时,数列为 {8,3,10,1,14,6}
  2. 但是 6,8,10,14 这几个节点的 左右指针,并没有完全的利用上.
  3. 如果我们希望充分的利用 各个节点的左右指针, 让各个节点可以指向自己的前后节点,怎么办?
  4. 解决方案-线索二叉树

一、线索二叉树基本介绍

  1. n 个结点的二叉链表中含有 n+1 【公式 2n-(n-1)=n+1】 个空指针域。利用二叉链表中的空指针域,存放指向 该结点在某种遍历次序下的前驱和后继结点的指针(这种附加的指针称为"线索")
  2. 这种加上了线索的二叉链表称为线索链表,相应的二叉树称为线索二叉树(ThreadedBinaryTree)。根据线索性质
    的不同,线索二叉树可分为前序线索二叉树、中序线索二叉树和后序线索二叉树三种
  3. 一个结点的前一个结点,称为前驱结点
  4. 一个结点的后一个结点,称为后继结点

二、 线索二叉树应用案例

将下面的二叉树,进行中序线索二叉树。中序遍历的数列为 {8,3,10,1,14,6}
在这里插入图片描述
在这里插入图片描述
说明: 当线索化二叉树后,Node 节点的 属性 left 和 right ,有如下情况:

  1. left 指向的是左子树,也可能是指向的前驱节点. 比如 ① 节点 left 指向的左子树, 而 ⑩ 节点的 left 指向的 就是前驱节点.
  2. right 指向的是右子树,也可能是指向后继节点,比如 ① 节点 right 指向的是右子树,而⑩ 节点的 right 指向 的是后继节点.

具体代码:

/**
 * 线索化二叉树
 */
public class ThreadedBinaryTreeDemo {
    public static void main(String[] args) {
        //测试线索二叉树
        Node root = new Node(1, "tom");
        Node node2 = new Node(3, "jack");
        Node node3 = new Node(6, "smith");
        Node node4 = new Node(8, "mary");
        Node node5 = new Node(10, "King");
        Node node6 = new Node(14, "dim");

        root.setLeft(node2);
        root.setRight(node3);
        node2.setLeft(node4);
        node2.setRight(node5);
        node3.setLeft(node6);

        //测试中序线索化

        ThreadedBinaryTree threadedBinaryTree = new ThreadedBinaryTree();
        threadedBinaryTree.setRoot(root);
        threadedBinaryTree.threadedNodes();

        //测试 10号
        Node leftnode = node5.getLeft();
        Node rightNode = node5.getRight();

        System.out.println("10 号结点的前驱结点是 =" +leftnode);
        System.out.println("10 号结点的后继结点是=" +rightNode);

        //当线索化二叉树后,能在使用原来的遍历方法
        // threadedBinaryTree.infixOrder();
        System.out.println("使用线索化的方式遍历 线索化二叉树");

        threadedBinaryTree.threadedList();
    }
}

//定义 ThreadedBinaryTree 实现了线索化功能的二叉树
class ThreadedBinaryTree{
    private Node root;

    //为了实现线索化,需要创建要给指向当前结点的前驱结点的指针
    // 在递归进行线索化时,pre 总是保留前一个结点
    private Node pre=null;

    public void setRoot(Node root){
        this.root=root;
    }
    //重载一把 threadedNodes 方法
    public void threadedNodes(){
        this.threadedNodes(root);
    }

    //遍历线索化二叉树的方法
    public void threadedList(){
        //定义一个变量,存储当前遍历的结点,从 root 开始
        Node node=root;
        while (node!=null){
            //循环的找到 leftType==1 的结点,第一个找到就是 8 结点
            //后面随着遍历而变化,因为当 leftType==1 时,说明该结点是按照线索化
            //处理后的有效结点
            while (node.getLeftType()==0){
                node=node.getLeft();
            }
            //打印当前这个结点
            System.out.println(node);
            //如果当前结点的右指针指向的是后继结点,就一直输出
            while (node.getRightType()==1){
                //获取到当前结点的后继结点
                node=node.getRight();
                System.out.println(node);
            }
            //替换这个遍历的结点
            node=node.getRight();


        }
    }

    //编写对二叉树进行中序线索化的方法

    /**
     *
     * @param node 当前需要线索化的节点
     */
    public void threadedNodes(Node node){
        //如果 node==null, 不能线索化
        if (node==null){
            return;
        }
        //(一)先线索化左子树
        threadedNodes(node.getLeft());

        //(二)线索化当前结点
        //以 8 结点来理解
        //8 结点的.left =null,8 结点的.leftType=1
        if (node.getLeft()==null){
            //让当前结点的左指针指向前驱结点
            node.setLeft(pre);
            //修改当前结点的左指针的类型,指向前驱结点
            node.setLeftType(1);
        }

        //处理后继节点
        if (pre!=null&&pre.getRight()==null){
            //让前驱结点的右指针指向当前结点
            pre.setRight(node);
            //修改前驱结点的右指针类型
            pre.setRightType(1);
        }
        //!!! 每处理一个结点后,让当前结点是下一个结点的前驱结点
        pre=node;
        //(三)在线索化右子树
        threadedNodes(node.getRight());
    }

    //删除节点
    public void delNode(int no){
        if (root!=null){
            //如果只有一个 root 结点, 这里立即判断 root 是不是就是要删除结点
            if (root.getNo()==no){
                root=null;
            }else {
                //递归删除
                root.delNode(no);
            }
        }else {
            System.out.println("空树,不能删除");
        }
    }

    /**
     * 前序遍历
     */
    public void preOrder(){
        if (this.root!=null){
            this.root.preOrder();
        }else{
            System.out.println("空树,无法遍历");
        }
    }

    /**
     * 中序遍历
     */
    public void infixOrder(){
        if (this.root!=null){
            this.root.infixOrder();
        }else {
            System.out.println("空树,无法遍历");
        }
    }

    /**
     * 后序遍历
     */
    public void postOrder(){
        if(this.root!=null){
            this.root.postOrder();
        }else{
            System.out.println("空树,无法遍历");
        }
    }

    /**
     *前序查找
     * @param no
     * @return
     */
    public Node preOrderSearch(int no){
        if (root!=null){
            return root.preOrderSearch(no);
        }else {
            return null;
        }
    }

    /**
     * 中序遍历
     * @param no
     * @return
     */
    public Node infixOrderSearch(int no){
        if(root!=null){
            return root.preOrderSearch(no);
        }else {
            return null;
        }
    }

    public Node postOrderSearch(int no){
        if (root!=null){
            return this.root.postOrderSearch(no);
        }else{
            return null;
        }
    }

}

class Node{

    private int no;
    private String name;

    private Node left;

    private Node right;
    //1. 如果 leftType==0 表示指向的是左子树, 如果 1 则表示指向前驱结点
    //2. 如果 rightType ==0 表示指向是右子树, 如果 1 表示指向后继结点

    private int leftType;
    private int rightType;

    public Node(int no, String name) {
        this.no = no;
        this.name = name;
    }

    @Override
    public String toString() {
      return"HeroNode[no="+no+",name="+name+"]";

    }

    public int getNo() {
        return no;
    }

    public void setNo(int no) {
        this.no = no;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public Node getLeft() {
        return left;
    }

    public void setLeft(Node left) {
        this.left = left;
    }

    public Node getRight() {
        return right;
    }

    public void setRight(Node right) {
        this.right = right;
    }

    public int getLeftType() {
        return leftType;
    }

    public void setLeftType(int leftType) {
        this.leftType = leftType;
    }

    public int getRightType() {
        return rightType;
    }

    public void setRightType(int rightType) {
        this.rightType = rightType;
    }

    //递归删除结点
    //1.如果删除的节点是叶子节点,则删除该节点
    //2.如果删除的节点是非叶子节点,则删除该子树
    public void delNode(int no){
        //思路
        // 1. 因为我们的二叉树是单向的,所以我们是判断当前结点的子结点是否需要删除结点,而不能去判断 当前这个结点是不是需要删除结点.
        // 2. 如果当前结点的左子结点不为空,并且左子结点 就是要删除结点,就将 this.left=null; 并且就返回 (结束递归删除)
        // 3. 如果当前结点的右子结点不为空,并且右子结点 就是要删除结点,就将 this.right=null;并且就返回 (结束递归删除)
        // 4. 如果第 2 和第 3 步没有删除结点,那么我们就需要向左子树进行递归删除
        // 5. 如果第 4 步也没有删除结点,则应当向右子树进行递归删除.


        //2. 如果当前结点的左子结点不为空,并且左子结点 就是要删除结点,就将 this.left=null; 并且就返回(结 束递归删除)
        if (this.left!=null&&this.left.no==no){
            this.left=null;
            return;
        }
        //3.如果当前结点的右子结点不为空,并且右子结点 就是要删除结点,就将 this.right=null ;并且就返回(结 束递归删除)
        if (this.right!=null&&this.right.no==no){
            this.right=null;
            return;
        }

        //4.我们就需要向左子树进行递归删除
        if(this.left!=null){
            this.left.delNode(no);
        }

        //5.则应当向右子树进行递归删除
        if (this.right!=null){
            this.right.delNode(no);
        }




    }
    //编写前序遍历的方法

    public void preOrder(){
        //先输出父结点
        System.out.println(this);
        //递归向左子树前序遍历
        if (this.left!=null){
            this.left.preOrder();
        }
        //递归向右子树前序遍历
        if (this.right!=null){
            this.right.preOrder();
        }
    }

    //中序遍历
    public void infixOrder(){
        //递归向左子树中序遍历
        if(this.left!=null){
            this.left.infixOrder();
        }
        //输出父结点
        System.out.println(this);

        //递归向右子树中序遍历
        if (this.right!=null){
            this.right.infixOrder();
        }

    }
    //后序遍历
    public void postOrder(){
        if (this.left!=null){
            this.left.postOrder();
        }
        if (this.right!=null){
            this.right.postOrder();
        }

        System.out.println(this);
    }

    //前序遍历查找

    /**
     *
     * @param  no 查找 no
     * @return 如果找到就返回该 Node,如果没有找到返回 null
     */
    public Node preOrderSearch(int no){
        System.out.println("进入前序遍历");
        //比较当前结点是不是
        if(this.no==no){
            return this;
        }
        //1.则判断当前结点的左子节点是否为空,如果不为空,则递归前序查找
        //2.如果左递归前序查找,找到结点,则返回
        Node resNode=null;
        if (this.left!=null){
            resNode=this.left.preOrderSearch(no);
        }
        if (resNode!=null){
            //说明左子树找到
            return resNode;
        }
        //1.左递归前序查找,找到结点,则返回,否继续判断
        //2.当前的结点的右子节点是否为空,如果不空,则继续向右递归前序查找
        if (this.right!=null){
            resNode=this.right.preOrderSearch(no);
        }

        return resNode;

    }

    //中序遍历查找

    public Node infixOrderSearch(int no){
        //判断当前结点的左子节点是否为空,如果不为空,则递归中序查找
        Node resNode=null;
        if (this.left!=null){
            resNode=this.left.infixOrderSearch(no);
        }

        if (resNode!=null){
            return  resNode;
        }
        System.out.println("中序查找");
        //如果找到,则返回,如果没有找到,就和当前结点比较,如果是则返回当前结点

        if (this.no==no){
            return  this;
        }
        //否则继续进行右递归的中序查找

        if (this.right!=null){
            resNode=this.right.infixOrderSearch(no);
        }

        return resNode;
    }

    //后序遍历查找
    public Node postOrderSearch(int no){
        //判断当前结点的左子节点是否为空,如果不为空,则递归后序查找
        Node resNode =null;

        if (this.left!=null){
            resNode=this.left.postOrderSearch(no);
        }
        if (resNode!=null){
            return resNode;
        }

        //如果左子树没有找到,则向右子树递归进行后序遍历查找
        if (this.right!=null){
            resNode=this.right.postOrderSearch(no);
        }

        if (resNode!=null){
            return resNode;
        }

        System.out.println("后序查找");

        //如果左右子树都没有找到,就比较当前结点是不是
        if (this.no==no){
            return this;
        }

        return resNode;

    }





}

三、遍历线索化二叉树

  1. 说明:对前面的中序线索化的二叉树, 进行遍历
  2. 分析:因为线索化后,各个结点指向有变化,因此原来的遍历方式不能使用,这时需要使用新的方式遍历
    线索化二叉树,各个节点可以通过线型方式遍历,因此无需使用递归方式,这样也提高了遍历的效率。 遍历的次
    序应当和中序遍历保持一致。
//遍历线索化二叉树的方法
    public void threadedList(){
        //定义一个变量,存储当前遍历的结点,从 root 开始
        Node node=root;
        while (node!=null){
            //循环的找到 leftType==1 的结点,第一个找到就是 8 结点
            //后面随着遍历而变化,因为当 leftType==1 时,说明该结点是按照线索化
            //处理后的有效结点
            while (node.getLeftType()==0){
                node=node.getLeft();
            }
            //打印当前这个结点
            System.out.println(node);
            //如果当前结点的右指针指向的是后继结点,就一直输出
            while (node.getRightType()==1){
                //获取到当前结点的后继结点
                node=node.getRight();
                System.out.println(node);
            }
            //替换这个遍历的结点
            node=node.getRight();


        }
    }

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值