287. 寻找重复数
给定一个包含 n + 1
个整数的数组 nums
,其数字都在 1
到 n
之间(包括 1
和 n
),可知至少存在一个重复的整数。
假设 nums
只有 一个重复的整数 ,找出 这个重复的数 。
你设计的解决方案必须不修改数组 nums
且只用常量级 O(1)
的额外空间。
示例 1:
输入:nums = [1,3,4,2,2]
输出:2
示例 2:
输入:nums = [3,1,3,4,2]
输出:3
示例 3:
输入:nums = [1,1]
输出:1
示例 4:
输入:nums = [1,1,2]
输出:1
提示:
1 <= n <= 105
nums.length == n + 1
1 <= nums[i] <= n
nums
中 只有一个整数 出现 两次或多次 ,其余整数均只出现 一次
进阶:
- 如何证明
nums
中至少存在一个重复的数字? - 你可以设计一个线性级时间复杂度
O(n)
的解决方案吗?
二、方法一
二分查找
class Solution {
public int findDuplicate(int[] nums) {
int n = nums.length;
int l = 1;
int r = n - 1;
int res = 0;
while (l <= r) {
int mid = l + ((r - l) >> 1);
int cnt = 0;
for (int i = 0; i < n; i++) {
if (nums[i] <= mid) {
cnt++;
}
}
if (cnt <= mid) {
l = mid + 1;
} else {
r = mid - 1;
res = mid;
}
}
return res;
}
}
复杂度分析
- 时间复杂度:O(nlogn),其中 n 为 nums 数组的长度。二分查找最多需要二分 O(logn) 次,每次判断的时候需要O(n) 遍历 nums 数组求解小于等于 mid 的数的个数,因此总时间复杂度为 O(nlogn)。
- 空间复杂度:O(1)。我们只需要常数空间存放若干变量。