LeetCode 1584. 连接所有点的最小费用

这篇博客介绍了如何运用Kruskal算法解决给定二维平面上点的最小费用连接问题。通过构建边集并按长度排序,然后利用DisjointSetUnion实现并查集,确保没有环路的情况下连接各个点,最终得到最小总费用。时间复杂度为O(n^2log(n)),空间复杂度为O(n^2)。
摘要由CSDN通过智能技术生成

1584. 连接所有点的最小费用

给你一个points 数组,表示 2D 平面上的一些点,其中 points[i] = [xi, yi]

连接点 [xi, yi] 和点 [xj, yj] 的费用为它们之间的 曼哈顿距离|xi - xj| + |yi - yj| ,其中 |val| 表示 val 的绝对值。

请你返回将所有点连接的最小总费用。只有任意两点之间 有且仅有 一条简单路径时,才认为所有点都已连接。

示例 1:

img

输入:points = [[0,0],[2,2],[3,10],[5,2],[7,0]]
输出:20
解释:

我们可以按照上图所示连接所有点得到最小总费用,总费用为 20 。
注意到任意两个点之间只有唯一一条路径互相到达。

示例 2:

输入:points = [[3,12],[-2,5],[-4,1]]
输出:18

示例 3:

输入:points = [[0,0],[1,1],[1,0],[-1,1]]
输出:4

示例 4:

输入:points = [[-1000000,-1000000],[1000000,1000000]]
输出:4000000

示例 5:

输入:points = [[0,0]]
输出:0

提示:

  • 1 <= points.length <= 1000
  • -106 <= xi, yi <= 106
  • 所有点 (xi, yi) 两两不同。

二、方法一

Kruskal 算法

class Solution {
    public int minCostConnectPoints(int[][] points) {
        int n = points.length;
        DisjointSetUnion dsu = new DisjointSetUnion(n);
        List<Edge> edges = new ArrayList<Edge>();
        for (int i = 0; i < n; i++) {
            for (int j = i + 1; j < n; j++) {
                edges.add(new Edge(dist(points, i, j), i, j));
            }
        }
        Collections.sort(edges, new Comparator<Edge>() {
            public int compare(Edge edge1, Edge edge2) {
                return edge1.len - edge2.len;
            }
        });
        int ret = 0, num = 1;
        for (Edge edge : edges) {
            int len = edge.len, x = edge.x, y = edge.y;
            if (dsu.unionSet(x, y)) {
                ret += len;
                num++;
                if (num == n) {
                    break;
                }
            }
        }
        return ret;
    }

    public int dist(int[][] points, int x, int y) {
        return Math.abs(points[x][0] - points[y][0]) + Math.abs(points[x][1] - points[y][1]);
    }
}

class DisjointSetUnion {
    int[] f;
    int[] rank;
    int n;

    public DisjointSetUnion(int n) {
        this.n = n;
        this.rank = new int[n];
        Arrays.fill(this.rank, 1);
        this.f = new int[n];
        for (int i = 0; i < n; i++) {
            this.f[i] = i;
        }
    }

    public int find(int x) {
        return f[x] == x ? x : (f[x] = find(f[x]));
    }

    public boolean unionSet(int x, int y) {
        int fx = find(x), fy = find(y);
        if (fx == fy) {
            return false;
        }
        if (rank[fx] < rank[fy]) {
            int temp = fx;
            fx = fy;
            fy = temp;
        }
        rank[fx] += rank[fy];
        f[fy] = fx;
        return true;
    }
}

class Edge {
    int len, x, y;

    public Edge(int len, int x, int y) {
        this.len = len;
        this.x = x;
        this.y = y;
    }
}

复杂度分析

  • 时间复杂度:O(n2 log(n)),其中 n 是节点数。一般Kruskal 是 O(mlogm) 的算法,但本题中 m=n^2
    ,因此总时间复杂度为 O(n2log(n))。

  • 空间复杂度:O(n^2),其中 n 是节点数。并查集使用 O(n) 的空间,边集数组需要使用 O(n^2)的空间。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值