1584. 连接所有点的最小费用
给你一个points
数组,表示 2D 平面上的一些点,其中 points[i] = [xi, yi]
。
连接点 [xi, yi]
和点 [xj, yj]
的费用为它们之间的 曼哈顿距离 :|xi - xj| + |yi - yj|
,其中 |val|
表示 val
的绝对值。
请你返回将所有点连接的最小总费用。只有任意两点之间 有且仅有 一条简单路径时,才认为所有点都已连接。
示例 1:
输入:points = [[0,0],[2,2],[3,10],[5,2],[7,0]]
输出:20
解释:
我们可以按照上图所示连接所有点得到最小总费用,总费用为 20 。
注意到任意两个点之间只有唯一一条路径互相到达。
示例 2:
输入:points = [[3,12],[-2,5],[-4,1]]
输出:18
示例 3:
输入:points = [[0,0],[1,1],[1,0],[-1,1]]
输出:4
示例 4:
输入:points = [[-1000000,-1000000],[1000000,1000000]]
输出:4000000
示例 5:
输入:points = [[0,0]]
输出:0
提示:
1 <= points.length <= 1000
-106 <= xi, yi <= 106
- 所有点
(xi, yi)
两两不同。
二、方法一
Kruskal 算法
class Solution {
public int minCostConnectPoints(int[][] points) {
int n = points.length;
DisjointSetUnion dsu = new DisjointSetUnion(n);
List<Edge> edges = new ArrayList<Edge>();
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
edges.add(new Edge(dist(points, i, j), i, j));
}
}
Collections.sort(edges, new Comparator<Edge>() {
public int compare(Edge edge1, Edge edge2) {
return edge1.len - edge2.len;
}
});
int ret = 0, num = 1;
for (Edge edge : edges) {
int len = edge.len, x = edge.x, y = edge.y;
if (dsu.unionSet(x, y)) {
ret += len;
num++;
if (num == n) {
break;
}
}
}
return ret;
}
public int dist(int[][] points, int x, int y) {
return Math.abs(points[x][0] - points[y][0]) + Math.abs(points[x][1] - points[y][1]);
}
}
class DisjointSetUnion {
int[] f;
int[] rank;
int n;
public DisjointSetUnion(int n) {
this.n = n;
this.rank = new int[n];
Arrays.fill(this.rank, 1);
this.f = new int[n];
for (int i = 0; i < n; i++) {
this.f[i] = i;
}
}
public int find(int x) {
return f[x] == x ? x : (f[x] = find(f[x]));
}
public boolean unionSet(int x, int y) {
int fx = find(x), fy = find(y);
if (fx == fy) {
return false;
}
if (rank[fx] < rank[fy]) {
int temp = fx;
fx = fy;
fy = temp;
}
rank[fx] += rank[fy];
f[fy] = fx;
return true;
}
}
class Edge {
int len, x, y;
public Edge(int len, int x, int y) {
this.len = len;
this.x = x;
this.y = y;
}
}
复杂度分析
-
时间复杂度:O(n2 log(n)),其中 n 是节点数。一般Kruskal 是 O(mlogm) 的算法,但本题中 m=n^2
,因此总时间复杂度为 O(n2log(n))。 -
空间复杂度:O(n^2),其中 n 是节点数。并查集使用 O(n) 的空间,边集数组需要使用 O(n^2)的空间。