CF gym102700 D. Dice(“矩阵快速幂”)

https://codeforces.com/gym/102700/problem/D
题意:有 n n n k k k面的骰子, k k k面编号分别为 1 , 2 , 3 , , , k 1,2,3,,,k 1,2,3,,,k,Diego对这些筛子进行了一些操作,使它们都不能摇到编号是 m m m的倍数那一面,摇到其他面的概率相同。问:抛完这 n n n个骰子,它们的结果相加后得到一个 m m m的倍数的概率。

思路:我们能摇到的面数为 k − k / m k-k/m kk/m,我们可以只考虑它们的余数(0~m-1)出现的概率。
容易求出抛一次骰子,每个余数出现的次数, P 1 [ 1 ] , P 1 [ 2 ] , P 1 [ 3 ] , , , P 1 [ m − 1 ] P_1[1],P_1[2],P_1[3],,,P_1[m-1] P1[1],P1[2],P1[3],,,P1[m1]
抛两次骰子时,考虑两个数相加等于i的所有情况, P 2 [ i ] = ∑ P 1 [ x ] ∗ P 1 [ y ] ( ( x + y ) % m = i ) P_2[i]=\sum P_1[x]*P_1[y] ((x+y)\%m=i) P2[i]=P1[x]P1[y]((x+y)%m=i)
抛三次骰子时, P 3 [ i ] = ∑ P 2 [ x ] ∗ P 1 [ y ] ( ( x + y ) % m = i ) P_3[i]=\sum P_2[x]*P_1[y] ((x+y)\%m=i) P3[i]=P2[x]P1[y]((x+y)%m=i)
抛四次骰子时, P 4 [ i ] = ∑ P 3 [ x ] ∗ P 1 [ y ] = ∑ P 2 [ x ] ∗ P 2 [ y ] ( ( x + y ) % m = i ) P_4[i]=\sum P_3[x]*P_1[y] =\sum P_2[x]*P_2[y]((x+y)\%m=i) P4[i]=P3[x]P1[y]=P2[x]P2[y]((x+y)%m=i)
……
这样递推n次, P n [ 0 ] P_n[0] Pn[0]就是最终概率的分子,分母为 ( k − k / m ) n (k-k/m)^n (kk/m)n

因为n比较大,所以可以借鉴一下快速幂的操作
~~
   ∩∩
  (´・ω・)
  _| ⊃/(___
 / └-(____/
  ̄ ̄ ̄ ̄ ̄ ̄ ̄

#include<bits/stdc++.h>

typedef long long ll;
using namespace std;
const long long mod = 1000000007;

ll n, m, k;

struct mat {
    ll a[300];
    friend mat operator*(const mat &x, const mat &y) {
        mat ans;
        for (int k = 0; k < m; k++) {
            ans.a[k] = 0;
            int i = k + 1, j = m - 1;
            while (i < j) {//i+j=m+k
                (ans.a[k] += x.a[i] * y.a[j] + x.a[j] * y.a[i]) %= mod;
                i++, j--;
            }
            if(i == j)(ans.a[k] += x.a[i] * y.a[i]) %= mod;
            i = 0, j = k;
            while(i < j) {//i+j=k
                (ans.a[k] += x.a[i] * y.a[j] + x.a[j] * y.a[i]) %= mod;
                i++, j--;
            }
            if(i == j)(ans.a[k] += x.a[i] * y.a[i]) %= mod;
        }
        return ans;
    }
} base;

mat q_pow(mat a, int b) {

    mat ans = a;
    while (b) {
        if (b & 1)
            ans = ans * a;
        a = a * a;
        b >>= 1;
    }
    return ans;
}
ll q_pow(ll a, int b) {
    ll ans = 1;
    while (b) {
        if (b & 1)
            ans = (ans * a) % mod;
        a = (a * a) % mod;
        b >>= 1;
    }
    return ans;
}
int main() {
    scanf("%lld%lld%lld", &n, &k, &m);
    for (int i = 1; i < m; i++)
        base.a[i] = k / m;
    if (k % m) {
        for (int i = 1; i <= k % m; i++)
            base.a[i]++;
    }
    mat ans = q_pow(base, n - 1);
    ll temp = q_pow(k - k / m, n);
    temp = q_pow(temp, mod - 2);
    printf("%lld\n", ans.a[0]*temp % mod);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值