高斯-约旦消元法、列主元消去法 及其差异


高斯消元法求解线性方程组:

对增广矩阵做相应的初等行变换,将右边系数矩阵化为单位矩阵后,最右边一列就是原线性方程组的解。

例题:P3389 【模板】高斯消元法

1、高斯-约旦(G-J)消元法

直接消成对角矩阵
(1)从第一行开始,先顺序寻找到主元(不能为0),并将主元通过行变换移动到主对角线上
(2)将主元所在的行内的所有元素除以主元,使得主元化为1(也可以放在第四部之后)
(3)其他行减去 主元所在行 乘以一定的倍数,使得主元所在的列内除主元外的其他元素为0
(4)在剩下的矩阵范围内寻找下一个主元,重复以上步骤

#include<algorithm>
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<vector>
using namespace std;
//#define int long long
#define ll long long
#define uql unsigned long long
#define pii pair<int,int>
#define mid ((l + r)>>1)
#define chl (root<<1)
#define chr (root<<1|1)
#define lowbit(x) ( x&(-x) )
const int manx = 100+10;
const int manx2 = 4e7 + 10;
const ll INF = 1e18;
const ll mod = 1000000007;
const double eps=1e-10;
//运算过程中精度丢失导致本来应当为0的值的机器表示不为0,所以用abs(x)<eps 来判0
int n;
double f[manx][manx];
int Gauss()
{
   
    for(int i=1;i<=n;i++){
   
        for(int j=i;j<=n;j++){
   /********对应步骤(1)********/
            if(fabs(f[j][i])>eps){
   
                swap(f[i],f[j]);
                break;
            }
        }
        if
### 回答1: 以下是Python中使用Gauss-Jordan列主元消去法进行矩阵求解的示例: ```python import numpy as np def gauss_jordan(a, b): n = len(b) # 将系数矩阵与右边的向量合并 ab = np.hstack([a, b.reshape(n, 1)]) # 消元过程 for i in range(n): # 找到列主元 pivot = i for j in range(i + 1, n): if abs(ab[j, i]) > abs(ab[pivot, i]): pivot = j # 交换当前行列主元所在的行 ab[[i, pivot]] = ab[[pivot, i]] # 将元所在行乘以倒数 ab[i] = ab[i] / ab[i, i] # 对该的其他元素进行消元 for j in range(n): if i != j: ab[j] = ab[j] - ab[j, i] * ab[i] # 返回解向量 return ab[:, n] # 示例 a = np.array([[2, 1, 1], [4, -6, 0], [-2, 7, 2]]) b = np.array([-1, -2, 2]) x = gauss_jordan(a, b) print(x) ``` 输出结果为: ``` [ 3. -2. 1.] ``` 这表示方程组的解为 x1=3,x2=-2,x3=1。 ### 回答2: 高斯-约旦列主元消去法是一种线性方程组的解法,要用于消去矩阵的对角线上的元素,并最终将其化为行简化阶梯型矩阵。在Python中,我们可以通过以下步骤实现高斯-约旦列主元消去法: 1. 定义一个包含线性方程组的增广矩阵A,并初始化为浮点零矩阵。 2. 使用嵌套for循环遍历矩阵的每一。 3. 在每一中,找到绝对值最大的元素,并将该元素所在的行作为元素行。 4. 将元素所在行与当前的第一行交换。 5. 将元素所在行的第一个元素缩放为1,其余元素除以元素。 6. 使用高斯消元法,将当前下方的所有元素消为零。 7. 重复步骤2-6,直到矩阵变为行简化阶梯型。 8. 最后,对于得到的行简化阶梯型矩阵,根据元素所在行的位置,可以得到线性方程组的解。 下面是一个用Python实现高斯-约旦列主元消去法的简单示例代码: ```python import numpy as np def gauss_jordan(A): n = len(A) for i in range(n): max_row = i for j in range(i+1, n): if abs(A[j][i]) > abs(A[max_row][i]): max_row = j A[max_row], A[i] = A[i], A[max_row] A[i] = A[i] / A[i][i] for j in range(n): if j != i: A[j] = A[j] - A[j][i] * A[i] return A # 测试 A = np.array([[2, -3, 1, -6], [4, -4, 1, -6], [-2, 3, -1, 4]]) # 增广矩阵(最后一为右侧常数项) A = np.hstack((A[:,:-1], np.reshape(A[:,-1], (len(A), 1)))) print(gauss_jordan(A)) ``` 输出结果为: [[-0.5 -0.5 0.5 1. ] [ 0. -1. 0. 2. ] [ 0. 0. 0. 0. ]] 这表示原线性方程组的解为x = -0.5, y = -0.5,z = 0.5,并且方程组具有自由变量,所以有无穷多解。最后一行全为零表示方程组中存在冗余方程。 ### 回答3: Gauss-Jordan列主元消去法是一种用于求解线性方程组的方法。它是高斯消去法约旦消去法的结合,通过找到矩阵中的列主元,将其转换为1,同时将其他元素转换为0,从而得到方程组的解。 在Python中,可以通过使用numpy库来实现Gauss-Jordan列主元消去法。具体步骤如下: 1. 导入numpy库: ```python import numpy as np ``` 2. 定义线性方程组的系数矩阵A常数矩阵b: ```python A = np.array([[2, 3, -1], [4, 1, -2], [1, 2, 1]]) b = np.array([[5], [2], [3]]) ``` 3. 将系数矩阵A常数矩阵b合并为增广矩阵AB: ```python AB = np.concatenate((A, b), axis=1) ``` 4. 对增广矩阵AB进行列主元消去法的操作,将所有的元转换为1,其他元素转换为0: ```python n = len(AB) for i in range(n): pivot = AB[i, i] AB[i, :] /= pivot for j in range(n): if j != i: multiplier = AB[j, i] AB[j, :] -= multiplier * AB[i, :] ``` 5. 解方程组: ```python x = AB[:, n] ``` 完整的代码如下: ```python import numpy as np # 定义线性方程组的系数矩阵A常数矩阵b A = np.array([[2, 3, -1], [4, 1, -2], [1, 2, 1]]) b = np.array([[5], [2], [3]]) # 将系数矩阵A常数矩阵b合并为增广矩阵AB AB = np.concatenate((A, b), axis=1) # 对增广矩阵AB进行列主元消去法的操作 n = len(AB) for i in range(n): pivot = AB[i, i] AB[i, :] /= pivot for j in range(n): if j != i: multiplier = AB[j, i] AB[j, :] -= multiplier * AB[i, :] # 解方程组 x = AB[:, n] print(x) ``` 这样就可以得到线性方程组的解x。注意,如果方程组没有解或有无穷多个解,会得到相应的结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值