【数学】高斯-约旦消元

本文讲述了高斯-约旦消元法及其在解决线性方程组中的应用,涉及消元过程、优化策略,以及相关的时间和空间复杂度分析,附有C++代码实例。
摘要由CSDN通过智能技术生成

前置知识


高斯-约旦消元

和高斯消元一样,高斯-约旦消元也是通过加减消元来化简方程。两者之间的不同在于,高斯-约旦消元会将系数矩阵消成形如 A ′ = [ a 1 , 1 ′ b 1 ′ a 2 , 2 ′ b 2 ′ ⋱ ⋮ a n , n ′ b n ′ ] A'=\begin{bmatrix}a_{1,1}'&&&&b_1'\\&a_{2,2}'&&&b_2'\\&&\ddots&&\vdots\\&&&a_{n,n}'&b_n'\end{bmatrix} A= a1,1a2,2an,nb1b2bn 的形式。
一般来说, a i , i ′ = 1 a_{i,i}'=1 ai,i=1,此时 x i = b i ′ x_i=b_i' xi=bi 即为一组解。
特殊情况下, a i , i ′ = 0 a_{i,i}'=0 ai,i=0,那么解的情况也很好确定,先判无解,再判多解,不多做赘述。
接下来简述高斯-约旦消元的过程。
首先我们利用 ( 1 ) (1) (1) 式进行消元,先通过除以 a 1 , 1 a_{1,1} a1,1 a 1 , 1 a_{1,1} a1,1 化为 1 1 1,其他和基本高斯消元相同。
接着对于 ( 2 ) (2) (2) 式,同样先将 a 2 , 2 a_{2,2} a2,2 化为 1 1 1,此时 a 1 , 0 = 0 a_{1,0}=0 a1,0=0,对 ( 1 ) (1) (1) 式的 a 1 , 1 a_{1,1} a1,1 没有影响,故可同理对 ( 1 ) (1) (1) 式消元。
同理,消元后必得如上系数矩阵。


优化

同理,交换至最大再消元。


算法参数

  • 时间复杂度: O ( n 3 ) O(n^3) O(n3)
  • 空间复杂度: O ( n 2 ) O(n^2) O(n2)

实现代码

#include<bits/stdc++.h>
using namespace std;
const long double eps=1e-10;
int n,cur=1;
long double a[110][110];
int main(){
	cin>>n;
	for (int i=1;i<=n;i++) for (int j=1;j<=n+1;j++) cin>>a[i][j];
	for (int i=1;i<=n;i++){
        int idx=cur;
        for (int j=cur;j<=n;j++) if (fabs(a[j][i])>fabs(a[idx][i])) idx=j;
        if (fabs(a[idx][i])>eps) swap(a[cur],a[idx]);
        else continue;
        for (int j=n+1;j>=i;j--) a[cur][j]/=a[cur][i];
        for (int j=1;j<=n;j++) if (j!=cur) for (int k=n+1;k>=i;k--) a[j][k]-=a[j][i]*a[cur][k];
        cur++;
    }
	for (int i=cur;i<=n;i++) if (fabs(a[i][n+1])>eps){cout<<"No solutions";return 0;}
	for (int i=1;i<=n;i++) if (fabs(a[i][i])<eps){cout<<"Many solutions";return 0;}
	for (int i=1;i<=n;i++) printf("x%d=%.10Lf\n",i,a[i][n+1]/a[i][i]);
	return 0;
}

练习

  • 34
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值