B站up信息爬取

处理反爬问题:

在爬B站用户信息时,由于使用的是requests请求,访问次数过多会被B站检测到,从而封禁本机IP,这让爬取的效率大打折扣。所以现在致力于反反爬机制。

首先使用到的是更换cookie:我询问了同样从事爬虫工作的同学如何进行反爬,他的方法是不断更换cookie以防止被检测。在经过测试后,确认该方法在B站无效。由于B站是直接检测访问的IP,所以更换cookie没能破除B站的反爬机制。

直接使用代理池的方式:我直接更换爬虫访问的IP,首先建立代理池。代理池是从各网站的获取的免费代理,首先从获取的代理中测试哪些代理是可用的,将可用的代理建立proxy_cool,再使用该代理池去爬取信息,每当一个代理挂掉后,从代理池中更换,继续爬取,完成爬虫任务。

代码如下:

def check_proxy(proxy_list):
    can_use = []
    url = 'https://www.baidu.com'
    headers = {
        'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.121 Safari/537.36'
    }
    for ip in proxy_list:
        try:
            respose = requests.get(url=url, headers=headers, proxies=ip, timeout=1)
            if respose.status_code == 200:
                can_use.append(ip)
        except:
            continue
    return can_use


def get_proxy():
    proxy_list = []
    file = open('proxy.json', 'r', encoding='UTF-8')
    info = json.load(file)
    for proxy in info:
        ip = proxy['ip'] + ':' + proxy['port']
        print(ip)
        proxy_dict = {
            'http': 'http://' + ip,
            'https': 'https://' + ip
        }
        proxy_list.append(proxy_dict)
    print(proxy_list)
    can_use = check_proxy(proxy_list)
    return can_use

### 如何按分类别爬取B视频信息 为了实现按照不同类别爬取B上的视频信息,通常会涉及到几个关键技术点:发送HTTP请求、解析HTML页面结构、提取所需的数据字段以及保存数据到文件或数据库中。下面具体说明这些过程。 #### 发送HTTP请求 利用`requests`库向目标网发起GET/POST请求来获取网页源码。对于特定类别的视频列表页URL构建非常重要,因为这决定了最终能抓取哪些类型的资源。一般情况下,在B这样的平台上,可以通过修改URL参数指定要查询的内容范围,比如分区ID等[^3]。 ```python import requests url = 'https://api.bilibili.com/x/web-interface/ranking/v2?' params = { 'rid': 177, # 类别id,例如科技区为177 'type': 'all' # 排行榜类型 all表示综合排行 } response = requests.get(url=url, params=params) data_json = response.json() ``` 这段代码展示了如何设置请求头和参数以获得某个固定时间段内的某一分区内排名靠前的视频详情。其中`rid`代表不同的频道编号,而`type='all'`意味着返回该区间内最受欢迎的作品集合。 #### 解析响应内容并抽取有用的信息 一旦获得了API接口返回的结果后,则需进一步处理JSON格式的数据包,从中挑拣出感兴趣的属性值,如标题、UP主昵称、播放量统计等等。这里采用字典遍历的方式读取出每条记录的关键要素: ```python for item in data_json['data']['list']: title = item['title'] author_name = item['owner']['name'] view_count = item['stat']['view'] print(f'Title:{title}, Author Name:{author_name}, View Count:{view_count}') ``` 上述片段实现了对单个作品基本信息的展示功能,当然实际应用时可根据需求调整输出项。 #### 数据存储环节 最后一步便是考虑怎样妥善保管收集来的资料了。如果只是临时测试的话可以直接打印出来;要是打算长期积累则建议存入CSV/XLSX文档里方便日后查阅分析。Pandas是一个非常适合做表格操作的强大工具,借助其DataFrame对象很容易完成这项任务。 ```python import pandas as pd video_data = [] for item in data_json['data']['list']: video_info = { 'Title': item['title'], 'AuthorName': item['owner']['name'], 'ViewCount': item['stat']['view'] } video_data.append(video_info) df = pd.DataFrame(data=video_data) df.to_excel('videos.xlsx', index=False) ``` 此部分代码创建了一个包含所有已知影片元数据的列表,并将其转换成pandas DataFrame形式再导出至Excel表单中以便后续查看[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值