算法训练 方格取数

本文介绍了如何使用二维动态规划解决一个算法训练问题:在给定的N×N方格图中找到两条路径,从左上角到右下角,使得路径上取走的数之和最大。通过两个人同时行走并更新状态转移方程来求解,避免了同一位置重复计数。样例输入和输出展示了问题的具体实例。作者承认自己的动态规划能力还需提升,并分享了学习资源。
摘要由CSDN通过智能技术生成

算法训练 方格取数

问题描述
  设有NN的方格图(N<=10),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0。
  某人从图的左上角的A 点(1,1)出发,可以向下行走,也可以向右走,直到到达右下角的B点(N,N)。
在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。
  此人从A点到B 点共走两次,试找出2条这样的路径,使得取得的数之和为最大。
输入格式
  输入的第一行为一个整数N(表示N
N的方格图),接下来的每行有三个整数,
前两个表示位置,第三个数为该位置上所放的数。一行单独的0表示输入结束。
输出格式
  只需输出一个整数,表示2条路径上取得的最大的和。
样例输入
  8
  2 3 13
  2 6 6
  3 5 7
  4 4 14
  5 2 21
  5 6 4
  6 3 15
  7 2 14
  0 0 0
样例输出
  67
小编我的动态规划还不是很 行,呜呜呜,依然靠学习别人的思路。
学习链接:https://www.luogu.com.cn/problemnew/solution/P1004
思路:我们考虑两个人同时走,记f[i][j][k][l]表示第1条路线的i,j走法和第2条路线的k,l走法。
状态转移方程为:
f[i][j][k][l]=max(f[i-1][j][k-1][l],f[i-1][j][k][l-1],f[i][j-1][k-1][l],f[i][j-1][k][l-1])+a[i][j]+a[k][l];
不过要判断i=k&&j=l的情况。

#include<iostream>
#include<algorithm>
using namespace std;
int a[11][11] = { 0 };//初始化为0
int f[11][11][11][11] = { 0 };//a[i][j][k][l]表示两个人同时走,一个走i,j 一个走k,l 
int main()
{
	int n;
	cin >> n;
	int i, j, k;
	do 
	{
		cin >> i >> j >> k;
		a[i][j] = k;
	} while (i != 0 || j != 0 || k != 0);	
	for (int i = 1; i <= n; i++) 
	{
		for (int j = 1; j <= n; j++) 
		{
			for (int k = 1; k <= n; k++) 
			{
				for (int l = 1; l <= n; l++) 
				{
					f[i][j][k][l] = max(f[i - 1][j][k - 1][l], max(f[i][j - 1][k - 1][l], max(f[i - 1][j][k][l - 1], f[i][j - 1][k][l - 1]))) + a[i][j] + a[k][l];
					if (i == k&&j == l)f[i][j][k][l] -= a[i][j];
				}
			}
		}
	}
	cout << f[n][n][n][n] << endl;	
	return 0;
}

欢迎批评指正!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值