算法训练 方格取数
问题描述
设有NN的方格图(N<=10),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0。
某人从图的左上角的A 点(1,1)出发,可以向下行走,也可以向右走,直到到达右下角的B点(N,N)。
在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。
此人从A点到B 点共走两次,试找出2条这样的路径,使得取得的数之和为最大。
输入格式
输入的第一行为一个整数N(表示NN的方格图),接下来的每行有三个整数,
前两个表示位置,第三个数为该位置上所放的数。一行单独的0表示输入结束。
输出格式
只需输出一个整数,表示2条路径上取得的最大的和。
样例输入
8
2 3 13
2 6 6
3 5 7
4 4 14
5 2 21
5 6 4
6 3 15
7 2 14
0 0 0
样例输出
67
小编我的动态规划还不是很 行,呜呜呜,依然靠学习别人的思路。
学习链接:https://www.luogu.com.cn/problemnew/solution/P1004
思路:我们考虑两个人同时走,记f[i][j][k][l]表示第1条路线的i,j走法和第2条路线的k,l走法。
状态转移方程为:
f[i][j][k][l]=max(f[i-1][j][k-1][l],f[i-1][j][k][l-1],f[i][j-1][k-1][l],f[i][j-1][k][l-1])+a[i][j]+a[k][l];
不过要判断i=k&&j=l的情况。
#include<iostream>
#include<algorithm>
using namespace std;
int a[11][11] = { 0 };//初始化为0
int f[11][11][11][11] = { 0 };//a[i][j][k][l]表示两个人同时走,一个走i,j 一个走k,l
int main()
{
int n;
cin >> n;
int i, j, k;
do
{
cin >> i >> j >> k;
a[i][j] = k;
} while (i != 0 || j != 0 || k != 0);
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)
{
for (int k = 1; k <= n; k++)
{
for (int l = 1; l <= n; l++)
{
f[i][j][k][l] = max(f[i - 1][j][k - 1][l], max(f[i][j - 1][k - 1][l], max(f[i - 1][j][k][l - 1], f[i][j - 1][k][l - 1]))) + a[i][j] + a[k][l];
if (i == k&&j == l)f[i][j][k][l] -= a[i][j];
}
}
}
}
cout << f[n][n][n][n] << endl;
return 0;
}
欢迎批评指正!