试题 算法训练 方格取数
问题描述
设有NN的方格图(N<=10),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0。
某人从图的左上角的A 点(1,1)出发,可以向下行走,也可以向右走,直到到达右下角的B点(N,N)。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。
此人从A点到B 点共走两次,试找出2条这样的路径,使得取得的数之和为最大。
输入格式
输入的第一行为一个整数N(表示NN的方格图),接下来的每行有三个整数,前两个表示位置,第三个数为该位置上所放的数。一行单独的0表示输入结束。
输出格式
只需输出一个整数,表示2条路径上取得的最大的和。
样例输入
8
2 3 13
2 6 6
3 5 7
4 4 14
5 2 21
5 6 4
6 3 15
7 2 14
0 0 0
样例输出
67
#include<bits/stdc++.h>
using namespace std;
#define N 15
int pos[N][N]={0};
int dp[N][N][N][N];
int n;
int a,b,c;
int main(){
cin>>n;
while(1){
cin>>a>>b>>c;
if(a==0&&b==0&&c==0) break;
pos[a][b]=c;
}
for(int i=1;i<=n;i++){//第一个人,起始位置是(1,1)
for(int j=1;j<=n;j++){
for(int k=1;k<=n;k++){//第二个人,起始位置是(1,1)
for(int l=1;l<=n;l++){
dp[i][j][k][l]=max(max(dp[i-1][j][k-1][l],dp[i-1][j][k][l-1]),max(dp[i][j-1][k-1][l],dp[i][j-1][k][l-1]))+pos[i][j]+pos[k][l];
if(i==k&&j==l)//如果两个人走的是同一个位置,那么位置上的值只能加一次
dp[i][j][k][l]-=pos[i][j];
}
}
}
}
cout<<dp[n][n][n][n]<<endl;
return 0;
}
思路
可以看成两个人同时出发到终点。
递推公式:
dp[i][j][k][l]=max(max(dp[i-1][j][k-1][l],dp[i-1][j][k][l-1]),max(dp[i][j-1][k-1][l],dp[i][j-1][k][l-1]))+pos[i][j]+pos[k][l];
解释:
第一个人的坐标是[i,j] ,第二个人的坐标是[k,l] 。
由于只能向下或向右走,
所以有四种情况:A向右,B向右;A向下,B向下;A向右,B向下;A向下,B向右。
那么求出这四种情况的最大值,再加上这两个人的坐标值,即为dp[i][j][k][l]
.
如果两个人走的是同一个位置,那么要减去一次。