试题 算法训练 方格取数

试题 算法训练 方格取数

问题描述
  设有NN的方格图(N<=10),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0。
  某人从图的左上角的A 点(1,1)出发,可以向下行走,也可以向右走,直到到达右下角的B点(N,N)。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。
  此人从A点到B 点共走两次,试找出2条这样的路径,使得取得的数之和为最大。
  
输入格式
  输入的第一行为一个整数N(表示N
N的方格图),接下来的每行有三个整数,前两个表示位置,第三个数为该位置上所放的数。一行单独的0表示输入结束。
  
输出格式
  只需输出一个整数,表示2条路径上取得的最大的和。
  
样例输入
  8
  2 3 13
  2 6 6
  3 5 7
  4 4 14
  5 2 21
  5 6 4
  6 3 15
  7 2 14
  0 0 0
样例输出
  67

#include<bits/stdc++.h>
using namespace std; 
#define N 15
int pos[N][N]={0};
int dp[N][N][N][N];
int n; 
int a,b,c;

int main(){
	cin>>n;
	while(1){
		cin>>a>>b>>c;
		if(a==0&&b==0&&c==0) break;
		pos[a][b]=c;
	}
	
	for(int i=1;i<=n;i++){//第一个人,起始位置是(1,1)
		for(int j=1;j<=n;j++){
			for(int k=1;k<=n;k++){//第二个人,起始位置是(1,1)
				for(int l=1;l<=n;l++){
					dp[i][j][k][l]=max(max(dp[i-1][j][k-1][l],dp[i-1][j][k][l-1]),max(dp[i][j-1][k-1][l],dp[i][j-1][k][l-1]))+pos[i][j]+pos[k][l];
					if(i==k&&j==l)//如果两个人走的是同一个位置,那么位置上的值只能加一次
					  	dp[i][j][k][l]-=pos[i][j];
				}
			}
		}
	}
	cout<<dp[n][n][n][n]<<endl;
	return 0;
}

思路
可以看成两个人同时出发到终点。
递推公式:
dp[i][j][k][l]=max(max(dp[i-1][j][k-1][l],dp[i-1][j][k][l-1]),max(dp[i][j-1][k-1][l],dp[i][j-1][k][l-1]))+pos[i][j]+pos[k][l];

解释:
第一个人的坐标是[i,j] ,第二个人的坐标是[k,l] 。
由于只能向下或向右走,
所以有四种情况:A向右,B向右;A向下,B向下;A向右,B向下;A向下,B向右。
那么求出这四种情况的最大值,再加上这两个人的坐标值,即为dp[i][j][k][l].
如果两个人走的是同一个位置,那么要减去一次。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序媛小y

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值