题目描述
这一天,牛牛与 牛魔王相遇了――然而这并不在 牛牛期望之中。
牛魔王不出意料又给 牛牛一道看似很难的题目:求有多少个不同的正整数三元组 (i,j,k)\text{}(i,j,k)(i,j,k) 满足 i+j=k\sqrt i+\sqrt j=\sqrt ki+j=k,且 i×j≤ni\times j\leq ni×j≤n。
牛牛并不会做,你能略施援手吗?
当两个三元组 (i1,j1,k1),(i2,j2,k2)\text{}(i_1,j_1,k_1), (i_2,j_2,k_2)(i1,j1,k1),(i2,j2,k2) 满足 i1≠i2i_1\neq i_2i1=i2 或 j1≠j2j_1\neq j_2j1=j2 或 k1≠k2k_1\neq k_2k1=k2 时它们被认为是不同的
输入描述:
第一行,一个正整数 n。 保证 1≤n≤4×1071\leq n\leq 4\times 10^71≤n≤4×107。
输出描述:
输出一行,一个整数表示答案。
示例1
输入
复制1
1
输出
复制1
1
说明
(1,1,4)
解析:
根据等式可得出2√i*j = i + j - k;
则可得出4i*j = v*v;
则可得出i,j是v²的因子。
#include<bits/stdc++.h>
using namespace std;
int main(){
long long n;
cin >> n;
long long flag = 0;
for(int i = 1; i*i <= n; i++){
for(int j = 1; j <= i; j++){
if(i * i % j == 0){
if(i != j)
flag += 2;
else
flag += 1;
}
}
}
cout << flag << endl;
}