枚举法

 

题目描述

这一天,牛牛与 牛魔王相遇了――然而这并不在 牛牛期望之中。
 牛魔王不出意料又给 牛牛一道看似很难的题目:求有多少个不同的正整数三元组 (i,j,k)\text{}(i,j,k)(i,j,k) 满足 i+j=k\sqrt i+\sqrt j=\sqrt ki​+j​=k​,且 i×j≤ni\times j\leq ni×j≤n。

牛牛并不会做,你能略施援手吗?

当两个三元组 (i1,j1,k1),(i2,j2,k2)\text{}(i_1,j_1,k_1), (i_2,j_2,k_2)(i1​,j1​,k1​),(i2​,j2​,k2​) 满足 i1≠i2i_1\neq i_2i1​​=i2​ 或 j1≠j2j_1\neq j_2j1​​=j2​ 或 k1≠k2k_1\neq k_2k1​​=k2​ 时它们被认为是不同的


 

输入描述:

第一行,一个正整数 n。

保证 1≤n≤4×1071\leq n\leq 4\times 10^71≤n≤4×107。

输出描述:

输出一行,一个整数表示答案。

示例1

输入

复制1

1

输出

复制1

1

说明

(1,1,4)

解析:

根据等式可得出2√i*j = i + j - k; 

则可得出4i*j = v*v;

则可得出i,j是v²的因子。

 

#include<bits/stdc++.h>
using namespace std;
int main(){
	long long n;
	cin >> n;
	long long flag = 0;
	for(int i = 1; i*i <= n; i++){
		for(int j = 1; j <= i; j++){
			if(i * i % j == 0){
				if(i != j)
					flag += 2;
				else
					flag += 1;
			}
		}
	}
		cout << flag << endl; 
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值