学习笔记1
参考书目:数学之美 吴军 著 第二版
统计语言模型
统计语言模型是自然语言处理的基础,被广泛应用于机器翻译、语音识别、印刷体或手写体识别、拼音纠错、汉字输入和文献查询等。
1.模型原型
语言的数学本质就是说话者将一串信息在头脑中做了一次编码,编码的结果是一串文字,而如果接受的人懂得这门语言,他就可以用这门语言的解码方式获得说话人想表达的信息。那么不免想到将编码规则教给计算机,这就是基于规则的自然语言处理。但是事实证明基于规则行不通,因为巨大的文法规则和语言的歧义性难以解决。所以出现了基于统计的自然语言处理(NLP)。基于统计的NLP的核心模型是通信系统加隐含马尔可夫模型。
看一个句子是否合理,就看它的合理性有多少,就是它出现的概率大小:
假定句子 S(W1,W2,......,Wn) Wi 代表词
其概率为 P(S) = P(W1,W2,.......,Wn)
根据条件概率公式,每个词出现的概率等于之前每个词出现的条件概率相乘,于是
P(W1,W2,......,Wn) = P(W1) · P(W1 | W2) · P(W3 | W1,W2) ··· P(Wn | W1,W2,......Wn-1)
但是这样计算量太大,句子越长越麻烦,因此Andrey Markov 提出了一种偷懒的方法,即马尔可夫假设:假设任意一个词出现的概率只与它前面的一个词有关。
因此 P(S)