【会议征稿】2024年智能感知与模式识别国际学术会议(ISPC 2024,9月6日-8)

在这里插入图片描述

2024年智能感知与模式识别国际学术会议 (ISPC 2024)将于2024年9月6日-8日于中国青岛召开。 会议将围绕智能感知与模式识别等领域中的最新研究成果,为来自国内外高等院校、科学研究所、企事业单位的专家、教授、学者、工程师等提供一个分享专业经验,扩大专业网络,面对面交流新思想以及展示研究成果的国际平台,探讨本领域发展所面临的关键性挑战问题和研究方向,以期推动该领域理论、技术在高校和企业的发展和应用,也为参会者建立业务或研究上的联系以及寻找未来事业上的全球合作伙伴。


1. 会议官方

  • 会议官网www.icispc.com

  • 时间地点:2024年9月6日-8日 | 中国-青岛

  • 截稿时间:2024年7月1日(多轮截稿,官网为准)

  • 接受/拒稿通知:投稿后1周内

  • 收录检索:EI核心、Scopus

2. 组织单位

在这里插入图片描述

3. 主席嘉宾

在这里插入图片描述
在这里插入图片描述

4. 征稿主题

在这里插入图片描述

5. 出版检索

在这里插入图片描述

所有的投稿都必须经过2-3位组委会专家审稿,经过严格的审稿之后,会议所有录用论文将在 ACM International Conference Proceedings Series(ISBN:979-8-4007-0731-5) ,出版后将提交EI Compendex和Scopus检索。EI检索稳定!

6. 参会投稿

投稿须知:

  • 论文根据模板排版不得少于4页,会议论文模板下载 → 【全文模板】

  • 英文投稿:请将排版好的论文全文投稿至 → 【会议官网】

  • 论文应具有学术或实用价值,未在国内外学术期刊或会议发表过。

参会方式:

  • 作者参会:一篇录用文章允许一名作者免费参会

  • 主讲嘉宾:申请主题演讲,由组委会审核;

  • 口头演讲:申请口头报告,时间为15分钟;

  • 海报展示:申请海报展示,A1尺寸,彩色打印;

  • 听众参会:不投稿仅参会,也可申请演讲及展示。

  • 报名参会:请前往 →【会议官网】


学术会议征稿

  • 想要了解更多国内主办的覆盖学科最全最广的学术会议,请前往会议官网:https://www.ais.cn/
  • 如有意愿参会或投稿,可以找我获取邀请码,享受参会、投稿优惠,优先审核

在这里插入图片描述


创作不易,麻烦点点赞和关注咯!
好的,我可以为您提供MATLAB GUI模式识别线性判别器的实现方法和源码。 首先,我们需要了解什么是线性判别器。线性判别器是一种常用的模式识别方法,它可以将数据分成不同的类别。对于二分类问题,线性判别器可以使用一条直线将两个类别分开,对于多分类问题,可以使用多条直线或平面将不同的类别分开。 接下来,我们需要创建一个MATLAB GUI界面,用于输入和展示数据。我们可以使用MATLAB的GUIDE工具来创建GUI界面。在GUI界面中,我们需要添加以下组件: 1. 一个axes组件,用于展示数据和分隔线; 2. 两个edit组件,用于输入数据; 3. 一个pushbutton组件,用于添加数据; 4. 一个popupmenu组件,用于选择不同的分类器。 接下来,我们需要编写代码实现线性判别器。我们可以使用MATLAB的分类器工具箱中的线性判别器函数fitcdiscr来训练模型,并使用predict函数来预测新的数据。具体实现过程如下: 1. 在GUI界面中添加一个pushbutton按钮,用于添加数据。当用户点击该按钮时,将读取两个edit组件中的数据,并将其添加到一个矩阵中。 2. 在GUI界面中添加一个popupmenu组件,用于选择不同的分类器。当用户选择不同的分类器时,将使用fitcdiscr函数训练模型,并使用predict函数预测新的数据。 3. 在GUI界面中添加一个axes组件,用于展示数据和分隔线。当用户添加新的数据时,将在该axes组件中绘制数据点。使用fitcdiscr函数训练模型后,将绘制分隔线。 下面是MATLAB GUI模式识别线性判别器的源码示例: ``` function varargout = LinearDiscriminantAnalysis_GUI(varargin) % LINEARDISCRIMINANTANALYSIS_GUI MATLAB code for LinearDiscriminantAnalysis_GUI.fig % LINEARDISCRIMINANTANALYSIS_GUI, by itself, creates a new LINEARDISCRIMINANTANALYSIS_GUI or raises the existing % singleton*. % % H = LINEARDISCRIMINANTANALYSIS_GUI returns the handle to a new LINEARDISCRIMINANTANALYSIS_GUI or the handle to % the existing singleton*. % % LINEARDISCRIMINANTANALYSIS_GUI('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in LINEARDISCRIMINANTANALYSIS_GUI.M with the given input arguments. % % LINEARDISCRIMINANTANALYSIS_GUI('Property','Value',...) creates a new LINEARDISCRIMINANTANALYSIS_GUI or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before LinearDiscriminantAnalysis_GUI_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to LinearDiscriminantAnalysis_GUI_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help LinearDiscriminantAnalysis_GUI % Last Modified by GUIDE v2.5 30-Nov-2021 20:49:31 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @LinearDiscriminantAnalysis_GUI_OpeningFcn, ... 'gui_OutputFcn', @LinearDiscriminantAnalysis_GUI_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before LinearDiscriminantAnalysis_GUI is made visible. function LinearDiscriminantAnalysis_GUI_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to LinearDiscriminantAnalysis_GUI (see VARARGIN) % Choose default command line output for LinearDiscriminantAnalysis_GUI handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes LinearDiscriminantAnalysis_GUI wait for user response (see UIRESUME) % uiwait(handles.figure1); % initialize data matrix handles.data = []; % plot initial figure axes(handles.axes1); plot(0, 0, 'o', 'MarkerFaceColor', 'k'); xlim([-1 1]); ylim([-1 1]); hold on; handles.hline = plot([0 0], [-1 1], 'r-', 'LineWidth', 2); hold off; % Update handles structure guidata(hObject, handles); % --- Outputs from this function are returned to the command line. function varargout = LinearDiscriminantAnalysis_GUI_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on button press in pushbutton1. function pushbutton1_Callback(hObject, eventdata, handles) % hObject handle to pushbutton1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % read data from edit boxes x = str2double(get(handles.edit1, 'String')); y = str2double(get(handles.edit2, 'String')); % add data to data matrix handles.data = [handles.data; x y]; % plot data points axes(handles.axes1); plot(x, y, 'o', 'MarkerFaceColor', 'b'); % update handles structure guidata(hObject, handles); % --- Executes on selection change in popupmenu1. function popupmenu1_Callback(hObject, eventdata, handles) % hObject handle to popupmenu1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % get selected classifier classifier = get(handles.popupmenu1, 'Value'); % train linear discriminant analysis model if classifier == 1 % train model using all data model = fitcdiscr(handles.data(:, 1:2), handles.data(:, 3)); else % train model using first 80% of data idx = randperm(size(handles.data, 1)); train_idx = idx(1:round(0.8*size(handles.data, 1))); test_idx = idx(round(0.8*size(handles.data, 1))+1:end); model = fitcdiscr(handles.data(train_idx, 1:2), handles.data(train_idx, 3)); end % get decision boundary k = model.Coeffs(1, 2).Const; b = model.Coeffs(1, 2).Linear; x = -1:0.01:1; y = k*x+b; % plot decision boundary axes(handles.axes1); delete(handles.hline); handles.hline = plot(x, y, 'r-', 'LineWidth', 2); % update handles structure guidata(hObject, handles); % --- Executes during object creation, after setting all properties. function popupmenu1_CreateFcn(hObject, eventdata, handles) % hObject handle to popupmenu1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % add items to popupmenu set(hObject, 'String', {'Linear Discriminant Analysis (All Data)', 'Linear Discriminant Analysis (80% Training Data)'}); % --- Executes during object creation, after setting all properties. function axes1_CreateFcn(hObject, eventdata, handles) % hObject handle to axes1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: place code in OpeningFcn to populate axes1 ``` 您可以将以上代码复制到MATLAB中,然后使用GUIDE工具创建GUI界面。在创建GUI界面时,需要将代码中的组件与GUIDE中的组件对应起来。完成后,您可以运行该程序并测试其功能。 希望这个代码示例能帮助到您。如果您有任何问题,请随时向我提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值