Codeforces Round #576 (Div. 1)

16 篇文章 0 订阅
2 篇文章 0 订阅

比赛链接:Codeforces Round #576 (Div. 1)

A. MP3

题意:n个声音要压缩在Ibyte中,压缩规则是:所需空间k(bits)=log_{2}K,其中K为不同声音的个数,你可以选择一个声音的上下边界并将边界外的删掉,问你最少删掉多少个声音可以压缩在Ibyte中。(注意:1byte=8bits)

分析:可以通过I求的k的最大值,离散化后做一个前缀和,扫一遍;(小心爆long long)

#include<bits/stdc++.h>
#define pb push_back
using namespace std;
typedef long long ll;
const int maxn=4e5+7;
const int mod=1e9+7;
const ll INF=1e18;
int a[maxn];
map<int,int> mp;
int pre[maxn];
int rua()
{
    int n,I;scanf("%d%d",&n,&I);
    for(int i=1;i<=n;i++) scanf("%d",&a[i]),mp[a[i]]++;
    sort(a+1,a+1+n);
    int sz=unique(a+1,a+n+1)-(a+1);
    for(int i=1;i<=sz;i++) pre[i]=pre[i-1]+mp[a[i]];
    int tmp=8*I/n;
    if(tmp>31) tmp=31;
    ll len=1ll<<tmp;
    if(len>=1ll*sz) return 0;
    int ans=0;
    for(int i=len;i<=sz;i++) ans=max(ans,pre[i]-pre[i-len]);
    return n-ans;
}
int main()
{
    printf("%d\n",rua());
    return 0;
}

B. Welfare State

题意:给你n个数q个操作;1 p x 表示a[p]变为x,2 x表示所有小于x的值都变为x;求q个操作后的n个数;

分析:我本来以为要线段树呜呜呜,但是后来一想他没有要每一个操作都输答案;

很明显要倒着处理操作;对于1操作而言,我们每次直接改动,因为这个和大小无关,同时更新记录一个tag[i],表示第i个数还取决于从tag[i]开始的2操作的最大值;保存下所有的2操作,最后自后向前做一个更新,add[i]表示第i个2操作及之后的最大值;

#include<bits/stdc++.h>
#define pb push_back
using namespace std;
typedef long long ll;
const int maxn=2e5+7;
const int mod=1e9+7;
const ll INF=1e18;
int a[maxn],tag[maxn],add[maxn];
void rua()
{
    int n;scanf("%d",&n);
    for(int i=1;i<=n;i++) scanf("%d",&a[i]);
    int q;scanf("%d",&q);
    int ff=0;
    while(q--)
    {
        int op;scanf("%d",&op);
        if(op==1)
        {
            int p,x;scanf("%d%d",&p,&x);
            a[p]=x;tag[p]=ff+1;
        }
        else if(op==2)
        {
            int x;scanf("%d",&x);
            add[++ff]=x;
        }
    }
    for(int i=ff;i>=0;i--) add[i]=max(add[i],add[i+1]);
    for(int i=1;i<=n;i++) a[i]=max(a[i],add[tag[i]]);
    for(int i=1;i<=n;i++) printf("%d ",a[i]);
}
int main()
{
    rua();
    return 0;
}

C. Matching vs Independent Set

题意:给你3n个点m条边;

Matching:有一个大小为n的边集两两之间无公共点;

IndSet:有一个大小为n的点集两两之间无公共边;

Impossible:不满足上面两种情况;

分析:大胆猜测Impossible不存在的,先计边数,即一条边的两点都没有被标记过,如果大于等于n,那就是Matching;否则就是InSet,现在点的标记情况是,一条边要么两点都被标记,要么一个标记一个没有标记,不存在两个点都不被标记,那也就是说,两个未标记的点之间一定没有边,所有输出没有标记的点;

#include<bits/stdc++.h>
#define pb push_back
using namespace std;
typedef long long ll;
const int maxn=3e5+7;
const int mod=1e9+7;
const ll INF=1e18;
int ans[maxn],vis[maxn];
void rua()
{
    int n,m,cnt=0;scanf("%d%d",&n,&m);
    for(int i=1;i<=3*n;i++) vis[i]=0;
    for(int i=1;i<=m;i++)
    {
        int x,y;scanf("%d%d",&x,&y);
        if(!vis[x] && !vis[y])
        {
            ans[++cnt]=i;
            vis[x]=vis[y]=1;
        }
    }
    if(cnt>=n) 
    {
        puts("Matching");
        for(int i=1;i<=n;i++) printf("%d ",ans[i]);
        puts("");return; 
    }
    puts("IndSet");
    cnt=0;
    for(int i=1;i<=3*n;i++)
    {
        if(!vis[i]) printf("%d ",i),cnt++;;
        if(cnt==n) break;
    }
    puts("");
}
int main()
{
    int t;scanf("%d",&t);
    while(t--) rua();
    return 0;
}

D. Rectangle Painting 1

题意:将一个h*w全部染白的代价是max(h,w),求全图染白最小代价;

分析:裸的暴搜+dp;

#include<bits/stdc++.h>
#define pb push_back
using namespace std;
typedef long long ll;
const int maxn=2e5+7;
const int mod=1e9+7;
const ll INF=1e18;
char mp[55][55];
int dp[55][55][55][55];
int check(int a,int b,int c,int d)
{
    if(dp[a][b][c][d]!=-1) return dp[a][b][c][d];
    if(a==c && b==d)
    {
        if(mp[a][b]=='#') return 1;
        return 0;
    }
    int tmp=max(c-a+1,d-b+1);
    for(int i=a;i<c;i++) tmp=min(tmp,check(a,b,i,d)+check(i+1,b,c,d));
    for(int i=b;i<d;i++) tmp=min(tmp,check(a,b,c,i)+check(a,i+1,c,d));
    dp[a][b][c][d]=tmp;
    return tmp;
}
int rua()
{
    int n;scanf("%d",&n);
    for(int i=1;i<=n;i++) scanf("%s",mp[i]+1);
    memset(dp,-1,sizeof(dp));
    return check(1,1,n,n);
}
int main()
{
    printf("%d\n",rua());
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值