X星球居民小区的楼房全是一样的,并且按矩阵样式排列。
其楼房的编号为 1,2,3…
当排满一行时,从下一行相邻的楼往反方向排号。
比如:当小区排号宽度为 6 时,开始情形如下:
1 2 3 4 5 6
12 11 10 9 8 7
13 14 15 …
我们的问题是:已知了两个楼号 m 和 n,需要求出它们之间的最短移动距离(不能斜线方向移动)。
输入格式
输入共一行,包含三个整数 w,m,n,w 为排号宽度,m,n 为待计算的楼号。
输出格式
输出一个整数,表示 m,n 两楼间最短移动距离。
数据范围
1≤w,m,n≤10000,
输入样例:
6 8 2
输出样例:
4
#include<iostream>
#include<algorithm>
using namespace std;
int main(){
int w, m, n;
cin >> w >> m >> n;
m --, n --;
//若不减一%w后是1,2,3,......,w-1,0,并不是单纯递增列号关系,求取列号的时候不能如此。
//减去一之后从零开始0,1,2,3,......,w-1;w-1,......,3,2,1,0;
//这样类似从零开始计数还是每行w个,可以直接求取列号
int x1 = m / w, x2 = n / w;//行号
int y1 = m % w, y2 = n % w;//求列号
if(x1 & 1) y1 = w - 1 - y1;//
if(x2 & 1) y2 = w - 1 - y2;
//曼哈顿距离
cout << abs(x1 - x2) +abs(y1 - y2) << endl;
return 0;
}