LLM辅助推荐系统

本文详细阐述了基于深度学习的推荐系统流程,包括数据采集、特征工程、特征编码(利用语言模型增强语义)、打分排序(直接评分、生成任务和混合任务),以及流程控制中大语言模型的应用,重点讲解了LLM在各个环节中的作用,特别是用户画像和物品画像的构建。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于深度学习的推荐系统流程如下:
数据采集,特征工程,特征编码,打分排序,还有整个的流程控制。
在这里插入图片描述
LLM可以在后面四个环节都起到作用。
1.特征工程
LLM集中于三个方面:用户画像、物品画像、样本扩充
在这里插入图片描述

在这里插入图片描述
2.特征编码
用语言模型来做特征编码,丰富语义信息。聚焦在两块,一是如何用语言模型来丰富用户特征的表征,二是如何用语言模型来丰富物品特征的表征。
3.打分排序
可以分成以下三种不同的任务,第一种是直接给 item 来进行打分;第二种是物品生成任务,直接生成用户感兴趣的下一个物品或者物品列表;第三种混合任务,用多任务的方法来建模。
在这里插入图片描述
4.流程控制
用一个大语言模型来调用其他的模块。
在这里插入图片描述
例子:
使用LLM生成用户和物品画像
在这里插入图片描述

来源:

https://mp.weixin.qq.com/s/jTl3E_dXHIAFl_cLv09hyg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

灵海之森

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值