LLM在社交媒体上应用的任务和挑战

文章探讨了将LLM应用于社交媒体时的知识获取、娱乐互动和管理任务。文中指出LLM面临的挑战包括缺乏训练、动态实时性及内容安全评估。提出通过RAG解决知识任务的动态性问题,并利用fine-tuning处理错误回复;娱乐任务则采用奖励模型预测用户行为。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章把用户使用社交媒体的原因归结为搜寻知识、找乐子和基础性任务等三种。
基于此,把LLM应用在社交媒体的任务抽象为了:

  1. 知识任务:用户获取新信息、知识,比如通过搜索帖子、询问其他用户。
  2. 娱乐任务:在社交媒体上获得娱乐,积极参与。
  3. 基础任务:对社交网络进行管理和操作的日常任务。

当然,挑战也有很多,总结了三点:
1.上面的三大任务,现在的llm都没有训练过
2.社交媒体是动态实时的,llm是静态的
3.llm输出内容的评估,安全性等

最后分别针对这三个任务的三点挑战,分别给出了解决方案:
1.对于知识任务:使用RAG检索与问题相关的社交媒体帖子和评论,得益于RAG的扩展性和动态性,解决了前两个问题。
针对LLM对一些错误的内容误导产生错误的回复,采用了fine-tuing方式(Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A., et al. (2022). Training language models to follow instructions with human feedback. Advances in Neural Information Processing Systems, 35:27730–27744.)
2.对于娱乐任务:应用一个奖励模型预测用户的交互行为。同时使用周期性的奖励模型来应对第二个挑战。

源论文:

https://arxiv.org/abs/2401.02575

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

灵海之森

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值