LinkedHashMap(1.8)
LinkedHashMap 继承了 HasahMap,并且它的存储结构也是继承了 HashMap 的 Node 类;
LinkedHashMap 是一个非线程安全的集合,使用用双向链表的结构,把所有存储在 HashMap 中的数据连接起来,LinkedHashMap 的默认实现是按插入顺序排序的(只是用前后指针去链接,但底层的存放还是无序的);
LinkedHashMap 还可以用来实现 LRU (Least recently used,最近最少使用)算法;
LRU 算法:最近最少使用,意思就是最近读取的数据放在最前面,最早读取的数据放在最后面,如果这个时候有新的数据进来,那么最后面存储的数据淘汰;
存储结构
LinkedHashMap = HashMap + 双向链表
//继承了 HashMap 的 Node 类
static class Entry<K,V> extends HashMap.Node<K,V> {
//其中维护了两个前后指针
Entry<K,V> before, after;
Entry(int hash, K key, V value, Node<K,V> next) {
//存放数据还是 HashMap 中的 Entry
super(hash, key, value, next);
}
}
//双向列表尾节点(最新)
transient LinkedHashMap.Entry<K,V> head;
//双向链表头节点(最老)
transient LinkedHashMap.Entry<K,V> tail;
构造器
属性 accessOrder(迭代顺序的默认值):默认情况下是 false,也就是默认情况下维护的是插入顺序。如果设置成 true 就可以将访问过的数据就排到最前面;
//下面五个构造器中,都是调用了它的父类HashMap中的构造器,accessOrder 开始都是 false
public LinkedHashMap(int initialCapacity, float loadFactor) {
super(initialCapacity, loadFactor);
accessOrder = false;
}
public LinkedHashMap(int initialCapacity) {
super(initialCapacity);
accessOrder = false;
}
public LinkedHashMap() {
super();
accessOrder = false;
}
public LinkedHashMap(Map<? extends K, ? extends V> m) {
super();
accessOrder = false;
putMapEntries(m, false);
}
添加
在 LinkedHashMap 中添加元素时都是调用它的父类 HashMap 中的方法的,但是它是如何在遍历时有序的呢?也就是说,它的 before 和 after 指针是如何维护的呢?
首先,在 LinkedHashMap 中,它重写了 init 方法以便初始化双向列表,因此,在创建 LinkedHashMap 的同时就会不知不觉地对双向链表进行初始化;
void init() {
header = new Entry<K,V>(-1, null, null, null);
header.before = header.after = header;
}
在 LinkedHashMap 中它重写了 HashMap 中的 newNode 创建结点的方法,而在该方法中就对指针做了操作;
也就是在该方法中,链接了插入的元素,本质就是一个双向链表的插入;
因此,LinkedHashMap 的存储,获取以及删除,都和HashMap 是一样的,只不过就是维护了一个双向链表;
Node<K,V> newNode(int hash, K key, V value, Node<K,V> e) {
//创建出目前要插入的Entry结点 p
LinkedHashMap.Entry<K,V> p =
new LinkedHashMap.Entry<K,V>(hash, key, value, e);
linkNodeLast(p);
return p;
}
private void linkNodeLast(LinkedHashMap.Entry<K,V> p) {
//获取链表尾结点
LinkedHashMap.Entry<K,V> last = tail;
//将目前要插入的结点 p 赋值给 尾结点(尾指针)tail
tail = p;
//如果last(也就是之前的尾结点)为空,说明是第一次插入元素,那么将p结点也赋值给头节点
if (last == null)
head = p;
else {
//否则,之前的元素赋值给p的before
p.before = last;
//p再赋值给last的after
last.after = p;
}
}
LRU 算法
LinkedHashMap 区别于 HashMap 最大的一个不同点是,前者是有序的,而后者是无序的。为此,LinkedHashMap 增加了两个属性用于保证顺序,分别是双向链表头结点 header 和标志位 accessOrder;
header 是 LinkedHashMap 所维护的双向链表的头结点,而 accessOrder 用于决定具体的迭代顺序;
afterNodeAccess()
当一个节点被访问时,如果 accessOrder 为 true,则会将该节点移到链表尾部。也就是说指定为 LRU 顺序之后,在每次访问一个节点时,会将这个节点移到链表尾部,保证链表尾部是最近访问的节点,那么链表首部就是最近最久未使用的节点;
void afterNodeAccess(Node<K,V> e) { // move node to last
LinkedHashMap.Entry<K,V> last;
if (accessOrder && (last = tail) != e) {
LinkedHashMap.Entry<K,V> p =
(LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
p.after = null;
if (b == null)
head = a;
else
b.after = a;
if (a != null)
a.before = b;
else
last = b;
if (last == null)
head = p;
else {
p.before = last;
last.after = p;
}
tail = p;
++modCount;
}
}
afterNodeInsertion()
在 put 等操作之后执行,当 removeEldestEntry() 方法返回 true 时会移除最晚的节点,也就是链表首部节点 first。
evict 只有在构建 Map 的时候才为 false,在这里为 true。
void afterNodeInsertion(boolean evict) { // possibly remove eldest
LinkedHashMap.Entry<K,V> first;
if (evict && (first = head) != null && removeEldestEntry(first)) {
K key = first.key;
removeNode(hash(key), key, null, false, true);
}
}
removeEldestEntry() 默认为 false,如果需要让它为 true,需要继承 LinkedHashMap 并且覆盖这个方法的实现,这在实现 LRU 的缓存中特别有用,通过移除最近最久未使用的节点,从而保证缓存空间足够,并且缓存的数据都是热点数据。
protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
return false;
}
LRU 缓存
以下是使用 LinkedHashMap 实现的一个 LRU 缓存:
- 设定最大缓存空间 MAX_ENTRIES 为 3;
- 使用 LinkedHashMap 的构造函数将 accessOrder 设置为 true,开启 LRU 顺序;
- 覆盖 removeEldestEntry() 方法实现,在节点多于 MAX_ENTRIES 就会将最近最久未使用的数据移除;
class LRUCache<K, V> extends LinkedHashMap<K, V> {
private static final int MAX_ENTRIES = 3;
protected boolean removeEldestEntry(Map.Entry eldest) {
return size() > MAX_ENTRIES;
}
LRUCache() {
super(MAX_ENTRIES, 0.75f, true);
}
}
public static void main(String[] args) {
LRUCache<Integer, String> cache = new LRUCache<>();
cache.put(1, "a");
cache.put(2, "b");
cache.put(3, "c");
cache.get(1);
cache.put(4, "d");
System.out.println(cache.keySet());
}
结果:[3, 1, 4]