数论

裴蜀定理

(peishu)

a , b a,b a,b是不全为0整数, ∃ x , y ∈ Z ∗ , a x + b y = c \exists x,y \in Z^*, ax+by=c x,yZ,ax+by=c的必要条件是 g c d ( a , b ) ∣ c gcd(a,b)|c gcd(a,b)c.

证明:因为 g c d ( a , b ) = g c d ( a , − b ) gcd(a,b)=gcd(a,-b) gcd(a,b)=gcd(a,b),故不妨设 a , b ≥ 0 a,b≥0 a,b0
设 设 s=gcd(a,b)$
s ∣ a , s ∣ b s|a, s|b sa,sb,则 s ∣ a x , s ∣ b y s|ax,s|by sax,sby,则s|c
应用
luoguP4549【模板】裴蜀定理
求序列 A A A的倍数和最小值,其实就是求 g c d ( A ) gcd(A) gcd(A)

线性筛的参考https://www.cnblogs.com/Rye-Catcher/p/8478936.html

欧拉函数

φ ( n ) φ (n) φ(n)是欧拉函数,表示小于n的正整数中与n互质的数的数目。是积性函数。
可将 p k p^k pk分成 p k − 1 p^{k-1} pk1段,每段中有 p − 1 p-1 p1个数与 p k p^k pk互质,则有
φ ( p k ) = ( p − 1 ) p k − 1 ( p = > p r i m e ) \varphi(p^k)=(p-1)p^{k-1} (p => prime) φ(pk)=(p1)pk1(p=>prime)
φ ( i ∗ p ) = { φ ( i ) ∗ ( p − 1 ) i % p = 0 φ ( i ) ∗ p i % p = 0̸ \varphi(i*p)=\left\{ \begin{aligned} \varphi(i)*(p-1)\quad i\%p=0\\ \varphi(i)*p\quad i\%p=\not0 \end{aligned} \right. φ(ip)={φ(i)(p1)i%p=0φ(i)pi%p=0
φ ( n ) = n × ∏ i = 1 s p i − 1 p i \varphi(n)=n \times \prod_{i=1}^{s} \frac{p_{i}-1}{p_{i}} φ(n)=n×i=1spipi1

欧拉定理

g c d ( a , n ) = 1 , a φ ( n ) ≡ 1   ( m o d   n ) gcd(a,n)=1, a^{φ (n)}≡1\ (mod\ n) gcd(a,n)=1,aφ(n)1 (mod n)

扩展欧拉定理

a b ≡ { a b   m o d   φ ( p ) , gcd ⁡ ( a , p ) = 1 a b , gcd ⁡ ( a , p ) ≠ 1 , b < φ ( p ) (   m o d   p ) a b   m o d   φ ( p ) + φ ( p ) , gcd ⁡ ( a , p ) ≠ 1 , b ≥ φ ( p ) a^{b} \equiv\left\{\begin{array}{ll} a^{b \bmod \varphi(p)}, & \operatorname{gcd}(a, p)=1 \\ a^{b}, & \operatorname{gcd}(a, p) \neq 1, b<\varphi(p) \quad(\bmod p) \\ a^{b \bmod \varphi(p)+\varphi(p)}, & \operatorname{gcd}(a, p) \neq 1, b \geq \varphi(p) \end{array}\right. ababmodφ(p),ab,abmodφ(p)+φ(p),gcd(a,p)=1gcd(a,p)=1,b<φ(p)(modp)gcd(a,p)=1,bφ(p)

费马小定理

g c d ( a , p ) = 1 , a p − 1 ≡ 1 ( m o d p ) gcd(a,p)=1, a^{p-1}≡1\pmod{p} gcd(a,p)=1,ap11(modp)
其中,p是质数。其实就是欧拉定理的特例。
在这里插入图片描述

求除法取模逆元

a b = a ∗ b p − 2 ( m o d p ) \frac{a}{b}=a*b^{p-2}\pmod{p} ba=abp2(modp)
证明 设 { a b = k 1 ∗ p + y 1 a ∗ x = k 2 ∗ p + y 2 a b − a ∗ x = k ∗ p + y 且 x ∗ b = 1 ( m o d p ) ∵ a − a ∗ x ∗ b = k ∗ p ∗ b + y ∗ b ( a − a ∗ x ∗ b ) = ( k ∗ p ∗ b + y ∗ b ) ( m o d p ) 0 = y ∗ b 又 ∵ b ≠ 1 ∴ y = 0 又 ∵ x ∗ b = 1 , b p − 1 ≡ 1 ( m o d p ) ∴ x = b p − 2 可 使 a b = a ∗ x ( m o d p ) 成 立 . 设\begin{cases}\frac{a}{b}=k1*p+y1\\a*x=k2*p+y2\\\frac{a}{b}-a*x=k*p+y\end{cases}且x*b=1\pmod{p}\\ \because a-a*x*b=k*p*b+y*b\\(a-a*x*b)=(k*p*b+y*b)\pmod{p}\\ 0=y*b又\because b\not=1\\ \therefore y=0又\because x*b=1, b^{p-1}≡1\pmod{p}\\ \therefore x=b^{p-2}可使\frac{a}{b}=a*x\pmod p成立. ba=k1p+y1ax=k2p+y2baax=kp+yxb=1(modp)aaxb=kpb+yb(aaxb)=(kpb+yb)(modp)0=ybb=1y=0xb=1,bp11(modp)x=bp2使ba=ax(modp).
丑陋证毕.

中国剩余定理(孙子定理)

威尔逊定理

( ( p − 1 ) ! + 1 ) % p = 0 ((p-1)!+1) \% p = 0 ((p1)!+1)%p=0
其中,p是质数。

莫比乌斯函数

μ ( i ) = { 1 i = 1 − 1 k    i = p k 0    o t h e r w i s e \mu(i)=\left\{ \begin{aligned} 1\quad i=1\\ -1^k\; i=p^k\\ 0 \; otherwise \end{aligned} \right. μ(i)=1i=11ki=pk0otherwise

莫比乌斯反演

∑ d ∣ n μ ( d ) = [ n = 1 ] \sum_{d|n}\mu(d)=[n=1] dnμ(d)=[n=1]

数论分块

值 为 ⌊ n i ⌋ 的 最 大 i 为 ⌊ n ⌊ n i ⌋ ⌋ 值为\lfloor\frac{n}{i}\rfloor的最大i为 \lfloor\frac{n}{\lfloor\frac{n}{i}\rfloor}\rfloor iniinn

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值