原题
一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
示例 1:
输入:n = 2
输出:2
示例 2:
输入:n = 7
输出:21
提示:
0 <= n <= 100
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/qing-wa-tiao-tai-jie-wen-ti-lcof
思路
这类题一般具有递推关系。
通过分析,我们容易得知,我们走上 n n n 阶台阶的种数就是我们走上 n − 1 n-1 n−1 阶和 n − 2 n-2 n−2 阶的种数和。
假设我们要走上第四阶台阶,我们已知走上第一级台阶有1种走法,第二级有2种走法,第三级有3种走法。
我们要走上第四级台阶, 因为一次只能走一级或两级 ,所以,我们可以 从第二级台阶走
两阶
来到第四阶台阶 ,也可以从第三级台阶走一阶
来到第四级台阶。
这样我们发现,就是一个 斐波那契数列 ,只不过起始数字不同。
- c++代码
class Solution {
public:
int numWays(int n) {
int a = 1, b = 1;
for (int i = 0; i < n; ++i) {
int sum = (a + b) % 1000000007;
a = b;
b = sum;
}
return a;
}
};
- python代码
class Solution:
def numWays(self, n: int) -> int:
a, b = 1, 1
for _ in range(n):
a, b = b, a + b
return a % 1000000007
更详细的斐波那契数列解析。